Supplementary Information for

Treatment of Electrochemical Plating Wastewater by Heterogeneous Photocatalysis: The Simultaneous Removal of 6:2 Fluorotelomer Sulfonate and Hexavalent Chromium

Hak-Hyeon Kim, Seyfollah Gilak Hakimabadi, Anh Le-Tuan Pham*

Department of Civil and Environmental Engineering, University of Waterloo

Waterloo, ON N2L 3G1, Canada

Submitted to RCS Advances

*Corresponding author

Tel.: +1-519-888-4567 ext. 30337; E-mail: anh.pham@uwaterloo.ca

Photocatalyst	BET Surface area (m ² /g)			
Ga ₂ O ₃	19.5			
In ₂ O ₃	7.1			
TiO ₂	51.9			

 Table S1. BET surface area of the as received photocatalysts.

Table S2. Formula and molecular weight of investigated PFASs.

Chemical	Abbreviation	Formula	Molecular weight (g/mol)	
6:2 Fluorotelomer sulfonate	6:2 FtS	$C_6F_{13}CH_2CH_2SO_3H$	428.16	
6:2 Fluorotelomer carboxylate	6:2 FtCA	C ₆ F ₁₃ CH ₂ COOH	378.09	
Perfluoroheptanoate	PFHpA	C ₆ F ₁₃ COOH	364.06	
Perfluorohexanoate	PFHxA	C ₅ F ₁₁ COOH	314.05	
Perfluoropentanoate	PFPeA	C ₅ F ₉ COOH	264.05	
Perfluorobutanoate	PFBA	C ₄ F ₇ COOH	214.04	

Instrument	Shimadzu LCMS-8030 Triple Quadrupole Mass Spectrometer						
Ionization	Negative electrospray						
Precolumn	Guard Column Thermo Scientific [™] Acclaim 120 Å C18, 4.6 x 10 mm, 5 µm						
Column	Agilent Infinity Lab Poroshell 120 Å EC-C18, 3.0 x 50 mm, 2.7 µm						
Column oven temperature	30°C						
Injection	30 µL						
Mobile phases	A: 5 mM ammonium acetate in LCMS grade water B: LCMS grade Methanol						
Flow rate	0.5 mL/min						
	Time (min)		Eluent A Conc. (%)	Eluent B Conc. (%)			
Gradient	0		60		40		
	0.5		60	40			
	4.5		20	80			
prome	10		20		80		
	10.5		60	40			
	13.5		Stop				
	Analytes	Ion transitions	Internal standards	Ion transitions	Calibration range (µg/L)		
Monitored	6:2 FtS	427>407	[¹³ C ₂]M6:2FtS	429 > 81	0.05 - 20		
ion	6:2 FtCA	377 > 293	[¹³ C ₂]M6:2FtCA	379>294	0.05 - 20		
transitions	PFHpA	363 > 319	[¹³ C ₄]MPFHpA	367 > 322	0.05 - 20		
	PFHxA	313>629	[¹³ C ₅]MPFHxA	315>270	0.05 - 20		
	PFPeA	263 > 219	[¹³ C ₅]MPFPeA	268 > 223	0.25 - 20		
	PFBA	213>169	[¹³ C ₄]MPFBA	217>172	0.25 - 20		

 Table S3. Quantitative analytical method.

Figure S1. SEM images and EDS analyses of the as received photocatalysts.

Figure S2. (a) photograph of the 4W UV-C lamp-equipped photoreactor box and (b) intensity of UV-C light (6 units) versus wavelength.

Figure S3. The removals of 6:2 FtS (a) and Cr(VI) (b) by Ga₂O₃, In₂O₃, and TiO₂ photocatalysts in the absence of light. [catalyst] = 0.5 g/L, [6:2 FtS]₀ = 100 μ g/L, [Cr(VI)]₀ = 1 mg/L, pH = 3.0 ± 1.

Figure S4. The removals of 6:2 FtS and Cr(VI) by UV-C/Ga₂O₃ system. $[Ga_2O_3] = 0.5$ g/L, [6:2 FtS]₀ = 2 mg/L, $[Cr(VI)]_0 = 20$ mg/L, pH = 3.0 ± 1 .

Figure S6. Effect of HCOOH doses on the degradation of 6:2 FtS by the UV-C/Ga₂O₃ in the presence of Cr(VI). ([Ga₂O₃]₀ = 0.5 g/L (surface area-based dose: 9.76 m²/L), [6:2 FtS]₀ = 100 μ g/L, [Cr(VI)] = 1 mg/L, [MeOH] $_0$ = 0.3 mM, pH_i = 3, Pre-sorption time = 60 min).

Figure S7. Effects of bromate or N₂ sparging on the degradation of 6:2 FtS by the UV-C/Ga₂O₃ system. ([Ga₂O₃]₀=0.5 g/L (surface area-based dose: 9.76 m²/L), [6:2 FtS]₀=100 μ g/L, [MeOH] $_0 = 0.3 \text{ mM}$, [BrO₃-]₀ = 10 mM, pH_i = 3, Pre-sorption time = 60 min)

Figure S8. Photographs of Ga₂O₃/Cr, TiO₂/Cr, and In₂O₃/Cr suspensions after 8 h UVC irradiation, respectively. $([Ga_2O_3]_0 = [TiO_2]_0 = [In_2O_3]_0 = 0.5 \text{ g/L}$ (surface area-based doses: $[Ga_2O_3] = 9.76 \text{ m}^2/\text{L}$, $[In_2O_3] = 3.57 \text{ m}^2/\text{L}$, $[TiO_2] = 25.94 \text{ m}^2/\text{L}$), $[6:2 \text{ FtS}]_0 = 100 \text{ µg/L}$, [Cr(VI)] = 1 mg/L, $[MeOH]_0 = 0.3 \text{ mM}$, $pH_i = 3$, Pre-sorption time = 60 min).

(2 μm	a) Ga ₂ O ₃ 2 μm Ο K	Ga K	2 µm	(b) In ₂ O ₃ 2μm Ο Κ	In L Cr K	2 µm	(c) TiO ₂ 2 µm О К	Ti K Cr K
<u>2 μm</u>	2 µm		2 µm	2 μm		2 µm	2 µm	
Element	Weight %	Atomic %	Element	Weight %	Atomic %	Element	Weight %	Atomic %
ОК	27.95	62.80	ОК	22.50	67.42	ОК	19.00	41.35
Ga K	71.83	37.04	ln L	77.06	32.17	In L	77.28	56.15
Cr K	0.22	0.15	Cr K	0.44	0.40	Cr K	3.72	2.50

Figure S9. SEM/EDS images of the spent catalysts.