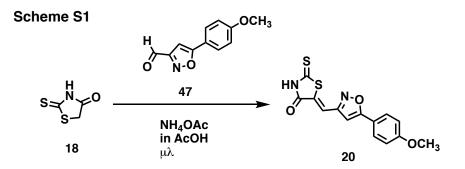
Selective Targeting of CD38 Hydrolase and Cyclase Activity as an Approach to Immunostimulation

Thomas Z. Benton,^a Catherine M. Mills,^a Jonathan M. Turner,^a Megan J. Francis,^a Dalan J. Solomon,^a Pieter B. Burger,^a Yuri K. Peterson,^a Nathan G. Dolloff, ^b Andre S. Bachmann,^c Patrick M. Woster *^a

^aDept. of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 70 President St., Charleston, SC 29425.

^bDept. of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425.

^cDept. of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Ave. NW, Grand Rapids, MI 49503.


Supporting Information

In Silico Analysis

A modified PDB was prepared from PDB 4XJT (human CD38 complexed with inhibitor 2 [4-[(2,6dimethylbenzyl)amino]-2-methylguinoline-8-carboxamide]). PDB 4XJT was imported into the AMBER10 program, and prepared by first breaking the bond between ADPr phosphate and Gln226 (mutated from Glu226) followed by substitution of a hydroxyl on the 1' position of ADPr phosphate. The Gln226 was repacked as Glu226. The 2' phosphate was removed from ADPr phosphate rendering ADPr. The complex was protonated at 310 K and pH 7.4 and was minimized. A compound (ligand) database of the 100 compounds populating the curated database outlined in the main manuscript was created, and structures were protonated at pH 7.4 and minimized. The 2-methylquinoline-8-carboxamide inhibitor in PDB 4XJT was removed from the complex and dummy atoms were used to map the active site. Compounds were docked into the active site using a triangle matcher and 50 poses were scored using London dG. Placements were further refined using an induced fit method and the top 5 poses were scored with GBVI/WSA dG. The docking campaign was designed such that ADPr and CD38 active site moleties would interact with docking compounds-simulating uncompetitive binding. Protein Ligand Interaction Fingerprints (PLIFs) were used to assess and annotate predictive binding poses along with observations from cocrystal structures described herein. The resulting preliminary binding poses were analyzed and visualized using the Molecular Operating Environment (MOE, Montreal, Quebec, Canada).

Synthesis

All reagents and dry solvents were purchased from Aldrich Chemical Co. (Milwaukee, WI), Sigma Chemical Co. (St. Louis, MO), VWR (Radnor, PA) or Fisher Scientific (Chicago, IL) and were used without further purification except as noted below. Triethylamine was distilled from potassium hydroxide and stored in a nitrogen atmosphere. Dry methanol, ethyl acetate, tetrahydrofuran, dimethyl formamide and hexane were either purchased (VWR) or prepared using a Glass Contour Solvent Purification System (Pure Process Technology, LLC, Nashua, NH). Microwave synthetic procedures were conducted on an Initiator 8 microwave synthesizer (Biotage, Charlotte, NC). Preparative scale chromatographic procedures were carried out using a Biotage Selekt chromatography system (Biotage, Charlotte, NC) fitted with silica gel 60 cartridges (230-440 mesh). Thin layer chromatography was conducted on Merck precoated silica gel 60 F-254. Apigenin, quercetin and compound **17** were purchased from Selleckchem (Houston, TX), and compounds **1-16** were purchased from Chembridge (San Diego, CA). All ¹H- and ¹³C-NMR spectra were recorded on a Bruker Avance 600 MHz spectrometer, and all chemical shifts are reported as δ values referenced to TMS or DSS. Splitting patterns are indicated as follows: s, singlet; d, doublet; t, triplet; m, multiplet; br, broad peak. In all cases, ¹H-NMR, ¹³C-NMR and MS spectra were consistent with assigned structures, and ¹³C peak assignments appear on the spectrum. Mass spectra were recorded by LC/MS on a Waters UPLC/MS system with a model QDa mass spectrometer detector. Prior to biological testing procedures, all compounds were determined to be >95% pure by UPLC chromatography (9:1 H₂O: acetonitrile, +0.1% formic acid to 1:9 H₂O/ acetonitrile +0.1% formic acid over 8 minutes) using a Waters Acquity H-series ultrahigh-performance liquid chromatograph fitted with a C18 reversed-phase column (Acquity UPLC BEH C18 1.7 M, 2.1 X 100 mm). Compounds **20-46** were synthesized according to the general procedure described below.

Synthesis of (Z)-5-((5-(4-methoxyphenyl)isoxazol-3-yl)methylene)-2-thioxothiazolidin-4-one (**20**).

A 0.05 g portion of 2-thioxothiazolidin-4-one 18 (0.43 mmol), 0.087 g (0.43 mmol) of 5-(4methoxyphenyl)isoxazole-3-carbaldehyde 47 and 0.66 mg (0.86 mmol) of ammonium acetate were added to a microwave vial along with 2 mL of glacial acetic acid, a stirring bar was added and the vial was sealed. The sealed vial was microwave irradiated for 10 minutes at 180 $^{\circ}$ C. during which time the reaction mixture changed from a colorless solution to a vibrant orangeyellow suspension. The reaction mixture was allowed to cool to room temperature, the vial was opened and completion of the reaction was verified by TLC (1:1 EtOAc/hexane). The reaction product was precipitated by adding 5 mL of water, the mixture was centrifuged (10.000 X G. 10°C, 5 minutes) and the liquid was decanted. The resulting solid was then washed with an additional 5 mL of water, re-centrifuged and the liquid was decanted. Residual water was removed from the solid by lyophilization to afford (Z)-5-((5-(4-methoxyphenyl)isoxazol-3yl)methylene)-2-thioxothiazolidin-4-one 20 (104 mg, 76.1%) as a yellowish solid. ¹H NMR (600 MHz, D₆-DMŚO/TMS): δ 7.84 (d, J = 8.7 Hz, 2H, H-7, H-11), 7.49 (s, 1H, H-21), 7.19 (s, 1H, H-4), 7.13–7.09 (m, 2H, H-10, H-8), 3.83 ppm (s, 3H, H-13). ¹³C NMR (600 MHz, D₆-DMSO/TMS) δ 55.48 (<u>C</u>H₃-Ò); 100.39 (N-C-<u>C</u>H); 114.85 (Ò-C-<u>C</u>H); 116.38 (O-C-<u>C</u>H); 127.60 (CH-<u>C</u>); 158.24 (N-C); 161.30 (O-C); 168.68 (CO); 170.05 (CS). UPLC retention time: 7.23 min. MS: calculated, 319.3650, found, 318.9710.

Synthesis of (Z)-5-(4-(methylsulfonyl)benzylidene)-2-thioxothiazolidin-4-one (**21**). Compound **21** was synthesized from 2-thioxothiazolidin-4-one and 4-(methylsulfonyl)benzaldehyde exactly as described for compound **20** and isolated as a dark yellow solid in 71.2% yield. ¹H NMR (600 MHz, D₆-DMSO/TMS) δ 7.84 (d, J = 8.7 Hz, 2H, H-7, H-11), 7.49 (s, 1H, H-21), 7.19 (s, 1H, H-4), 7.13–7.09 (m, 2H, H-10, H-8), 3.83 ppm (s, 3H, H-13). ¹³C NMR (600 MHz, D₆-DMSO/TMS) δ 43.80 (CH₃); 128.18 (C-<u>C</u>H); 129.61 (<u>C</u>-CH); 129.66 (C-<u>C</u>H); 138.18 (<u>C</u>-CH); 142.02 (<u>C</u>-CH); 195.84 (<u>C</u>S). UPLC retention time: 5.21 min. MS: calculated, 298.3770, found, 298.0614.

Synthesis of (Z)-2-thioxo-5-(4-(trifluoromethoxy)benzylidene)thiazolidin-4-one (22).

Compound **22** was synthesized from 2-thioxothiazolidin-4-one and 4-(trifluoromethoxy)benzaldehyde exactly as described for compound **20** and isolated as a dark orange-yellow solid in 70.4% yield. ¹H NMR (600 MHz, D₆-DMSO/TMS) δ 7.75–7.67 (m, 3H, H-7, H-18, H-9), 7.52 ppm (d, J = 8.0 Hz, 2H, H-10, H-17). ¹³C NMR (600 MHz, D₆-DMSO/TMS) δ 122.07 (C-<u>C</u>H); 127.16 (<u>C</u>-CH); 130.32 (C-<u>C</u>H); 132.63 (<u>C</u>-CH); 132.90 (C-<u>C</u>H); 149.76 (<u>C</u>-CH); 169.71 (<u>C</u>O); 195.89 (<u>C</u>S). UPLC retention time 7.56 min. MS: calculated, 304.2892, found, 304.0641.

Synthesis of (Z)-2-thioxo-5-(4-(trifluoromethyl)benzylidene)thiazolidin-4-one (23). Compound 23 was synthesized from 2-thioxothiazolidin-4-one and 4-(trifluoromethyl)benzaldehyde exactly as described for compound 20 and isolated as a yellow solid in 79.8% yield. ¹H NMR (600 MHz, D₆-DMSO/TMS) δ 7.90–7.79 (m, 4H, H-10, H-16, H-17, H-9), 7.71 ppm (s, 1H, H-7). UPLC retention time 7.43 min. MS calculated, 288.0568, found, 288.0568.

Synthesis of (Z)-5-((4'-methoxy-[1,1'-biphenyl]-4-yl)methylene)-3-methyl-2-thioxothiazolidin-4-one (**24**).

Compound **24** was synthesized from 3-methyl-2-thioxothiazolidin-4-one and 4'-methoxy-[1,1'-biphenyl]-4-carbaldehyde exactly as described for compound **20** and isolated as a yellow solid in 70.6% yield. ¹H NMR (600 MHz, D₆-DMSO/TMS) δ 7.85–7.82 (m, 3H), 7.74–7.69 (m, 4H), 7.05 (d, J = 8.7 Hz, 2H), 3.81 (s, 3H, H-23), 3.41 ppm (s, 3H, H-8). ¹³C NMR (600 MHz, D₆-DMSO/TMS) δ 55.74 (CH₃); 115.08 (C-<u>C</u>H); 127.40 (C-<u>C</u>H); 128.55 (C-<u>C</u>H); 131.87 (C-<u>C</u>H); 132.97 (C-<u>C</u>H). UPLC retention time 8.817 min. MS calculated, 342.05442, found, 342.0713.

Synthesis of (Z)-5-(quinolin-6-ylmethylene)-2-thioxothiazolidin-4-one (25).

Compound **25** was synthesized from 2-thioxothiazolidin-4-one and quinoline-6-carbaldehyde exactly as described for compound **20** and isolated as a light yellow solid in 50.7% yield. ¹H NMR (600 MHz, D₆-DMSO/TMS) δ 8.97 (dd, J = 0.9, 4.1 Hz, 1H), 8.52 (d, J = 8.2 Hz, 1H), 8.22 (s, 1H), 8.11 (d, J = 8.7 Hz, 1H), 7.93 (dd, J = 1.8, 8.7 Hz, 1H), 7.80 (s, 1H), 7.61 ppm (dd, J = 4.2, 8.3 Hz, 1H, H-11). ¹³C NMR (600 MHz, D₆-DMSO/TMS) δ 123.00 (C-<u>C</u>H); 128.42 (<u>C</u>-CH); 130.52 (C-<u>C</u>H); 130.71 (C-<u>C</u>H); 130.89 (C-<u>C</u>H); 131.51 (<u>C</u>-CH); 137.41 (C-<u>C</u>H); 148.21 (<u>C</u>O); 152.79 (C-<u>C</u>H); 196.41 (<u>C</u>S). UPLC retention time 1.55 min. MS calculated, 273.00780, found, 272.9719.

Synthesis of (Z)-5-(dibenzo[b,d]furan-2-ylmethylene)-2-thioxothiazolidin-4-one (26).

Compound **26** was synthesized from 2-thioxothiazolidin-4-one and dibenzo[*b*,*d*]furan-2-carbaldehyde exactly as described for compound **20** and isolated as an off-white solid in 71.1% yield. ¹H NMR (600 MHz, D₆-DMSO/TMS) δ 8.31 (s, 1H, H-8), 8.20 (d, J = 7.7 Hz, 1H), 7.83 (d, J = 8.6 Hz, 1H), 7.77 (s, 1H), 7.72 (d, J = 8.5 Hz, 2H), 7.57 (t, J = 7.7 Hz, 1H), 7.44 ppm (t, J = 7.4 Hz, 1H). ¹³C NMR (600 MHz, D₆-DMSO/TMS) δ 112.36 (C-<u>C</u>H); 113.34(C-<u>C</u>H); 122.18 (C-<u>C</u>H); 123.18 (<u>C</u>-CH); 123.90 (C-<u>C</u>H); 124.20 (C-<u>C</u>H); 125.24 (<u>C</u>-CH); 128.82 (<u>C</u>-CH); 129.06 (C-<u>C</u>H); 130.66 (C-<u>C</u>H); 132.32 (C-<u>C</u>H); 156.81 (<u>C</u>O).UPLC retention time 7.94 min. MS calculated, 311.00747, found, 312.0881.

Synthesis of (Z)-5-(4-phenoxybenzylidene)-2-thioxothiazolidin-4-one (27).

Compound **27** was synthesized from 2-thioxothiazolidin-4-one and 4-phenoxybenzaldehyde exactly as described for compound **20** and isolated as a yellow solid in 55.9% yield. ¹H NMR (600 MHz,) D₆-DMSO/TMS δ 7.62–7.59 (m, 3H), 7.47–7.42 (m, 2H), 7.25–7.07 ppm (m, 5H). ¹³C NMR (600 MHz, D₆-DMSO/TMS) δ 117.96 (C-<u>C</u>H); 120.19 (C-<u>C</u>H); 124.25 (<u>C</u>-CH); 125.14 (C-<u>C</u>H); 128.12 (<u>C</u>-CH); 130.17 (C-<u>C</u>H); 131.66 (C-<u>C</u>H); 133.23 (C-<u>C</u>H); 155.54 (<u>C</u>-CH); 159.66 (<u>C</u>-CH); 169.84 (<u>C</u>O); 195.96 (<u>C</u>S). UPLC retention time 7.73 min. MS calculated, 314.02312, found, 314.0204.

Synthesis of (Z)-5-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)methylene)-2-thioxothiazolidin-4-one (**28**). Compound **28** was synthesized from 2-thioxothiazolidin-4-one and 2,3-dihydrobenzo[b][1,4]dioxine-6-carbaldehyde exactly as described for compound **20** and isolated as a dark orange solid in 63.8% yield. ¹H NMR (600 MHz, D₆-DMSO/TMS) δ 7.52 (s, 1H, H-15), 7.09–7.06 (m, 2H), 7.00 (d, J = 8.5 Hz, 1H), 4.30 ppm (dd, J = 4.5, 17.6 Hz, 4H, H-13, H-14). ¹³C NMR (600 MHz, D₆-DMSO/TMS) δ 64.46 (CH₂); 65.01 (CH₂); 118.65 (<u>C</u>-CH); 118.67 (C-<u>C</u>H); 119.60 (<u>C</u>-CH); 119.62 (<u>C</u>-CH); 124.84 (<u>C</u>-CH); 124.86 (C-<u>C</u>H); 126.73 (<u>C</u>-CH); 132.22 (<u>C</u>-CH); 132.24 (<u>C</u>O); 144.29 (<u>C</u>S). UPLC retention time 5.83 min. MS calculated, 280.00238, found, 279.9747.

Synthesis of (*Z*)-5-((4'-methyl-[1,1'-biphenyl]-3-yl)methylene)-2-thioxothiazolidin-4-one (**29**) Compound **29** was synthesized from 2-thioxothiazolidin-4-one and 4'-methyl-[1,1'-biphenyl]-3carbaldehyde exactly as described for compound **20** and isolated as a dark red-orange solid in 64.3% yield. ¹H NMR (600 MHz, D₆-DMSO/TMS) δ 7.80 (s, 1H, H-8), 7.74–7.55 (m, 5H), 7.50 (d, J = 7.7 Hz, 1H), 7.28 (d, J = 7.7 Hz, 2H), 2.35–2.31 ppm (m, 3H, H-21). ¹³C NMR (600 MHz, D₆-DMSO/TMS) δ 21.15 (CH₃); 126.43 (<u>C</u>-CH); 127.07 (C-<u>C</u>H); 129.09 (C-<u>C</u>H); 129.13 (C-<u>C</u>H); 130.08 (C-<u>C</u>H); 130.17 (C-<u>C</u>H); 130.52 (C-<u>C</u>H); 132.10 (C-<u>C</u>H); 134.14 (<u>C</u>-CH); 136.62 (<u>C</u>-CH); 137.93 (<u>C</u>-CH); 141.59 (<u>C</u>-CH); 169.90 (<u>C</u>O); 196.13 (<u>C</u>S). UPLC retention time 8.34 min. MS calculated, 312.04386, found, 312.0044.

Synthesis of (Z)-5-((6-chloro-[1,3]dioxolo[4,5-g]quinolin-7-yl)methylene)-2-thioxothiazolidin-4-one (**30**). Compound **30** was synthesized from 2-thioxothiazolidin-4-one and 6-chloro-[1,3]dioxolo[4,5-g]quinoline-7-carbaldehyde exactly as described for compound **20** and isolated as a dark orange solid in 40.2% yield. ¹H NMR (600 MHz, D₆-DMSO/TMS) δ 8.12 (s, 1H), 7.65 (s, 1H), 7.58 (s, 1H), 7.28 (s, 1H), 6.25 ppm (s, 2H, H-18). ¹³C NMR (600 MHz, D₆-DMSO/TMS) δ 60.73 (CH₂); 72.71 (<u>C</u>-CH); 103.41 (<u>C</u>-CH); 104.05 (C-<u>C</u>H); 104.68 (C-<u>C</u>H); 123.63 (<u>C</u>-CH); 124.49 (<u>C</u>-CH); 125.25 (C-<u>C</u>H); 137.04 (C-<u>C</u>H); 145.98 (<u>C</u>-CH); 148.00 (<u>C</u>-CH); 149.25 (<u>C</u>-CH); 153.55 (<u>C</u>O). UPLC retention time 6.48 min. MS calculated, 350.95866, found, 350.9773.

Synthesis of (Z)-5-((9H-fluoren-3-yl)methylene)-2-thioxothiazolidin-4-one (**31**).

Compound **31** was synthesized from 2-thioxothiazolidin-4-one and 9*H*-fluorene-3-carbaldehyde exactly as described for compound **20** and isolated as an orange solid in 72.4% yield. ¹H NMR (600 MHz, D₆-DMSO/TMS) δ 8.06–8.03 (m, 1H), 7.97 (s, 1H, H-8), 7.78–7.68 (m, 2H), 7.62 (s, 2H), 7.44–7.36 (m, 2H), 4.00 ppm (s, 2H, H-9). ¹³C NMR (600 MHz, D₆-DMSO/TMS) δ 36.89 (CH₂); 121.33 (<u>C</u>-CH); 121.41 (C-<u>C</u>H); 125.82 (C-<u>C</u>H); 127.41 (C-<u>C</u>H); 127.56 (C-<u>C</u>H); 128.53 (C-<u>C</u>H); 130.57 (C-<u>C</u>H);131.85 (<u>C</u>-CH); 132.71 (C-<u>C</u>H); 144.21 (C-<u>C</u>H); 144.62 (C-<u>C</u>H); 170.02 (<u>C</u>O). UPLC retention time 8.10 min. MS calculated, 310.02821, found, 309.9631.

Synthesis of (Z)-2-thioxo-5-((4'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl)methylene)thiazolidin-4-one (**32**). Compound **32** was synthesized from 2-thioxothiazolidin-4-one and 4'-(trifluoromethyl)-[1,1'-biphenyl]-4-carbaldehyde exactly as described for compound **20** and isolated as an orange solid in 66.5% yield. ¹H NMR (600 MHz, D₆-DMSO/TMS) δ 7.99–7.69 ppm (m, 9H). ¹³C NMR (600 MHz, D₆-DMSO/TMS) δ 125.95 (CF₃, <u>C</u>-CH); 127.60 (C-<u>C</u>H); 127.79 (C-<u>C</u>H); 127.99 (C-<u>C</u>H)); 130.90 (C-<u>C</u>H); 131.23 (C-<u>C</u>H); 132.12 (<u>C</u>-CH); 140.34 (<u>C</u>-CH); 142.81 (<u>C</u>-CH); 169.36 (<u>C</u>O). UPLC retention time 8.51 min. MS: calculated, 364.3882, found, 364.0916.

Synthesis of (Z)-5-((4'-methyl-[1,1'-biphenyl]-4-yl)methylene)-2-thioxothiazolidin-4-one (**33**). Compound **33** was synthesized from 2-thioxothiazolidin-4-one and 4'-methyl-[1,1'-biphenyl]-4-carbaldehyde exactly as described for compound **20** and isolated as a yellow solid in 77.6% yield. ¹H NMR (600 MHz, D₆-DMSO/TMS) δ 7.85–7.81 (m, 2H), 7.68–7.62 (m, 5H), 7.30 (d, J = 7.4 Hz, 2H), 2.34 ppm (s, 3H, H-16). ¹³C NMR (600 MHz, D₆-DMSO/TMS) δ 20.74 (CH₃); 125.04 (<u>C</u>-CH); 126.67 (C-CH); 127.23(C-CH)); 129.75 (<u>C</u>-CH, C-CH); 131.22 (<u>C</u>-CH); 137.94(<u>C</u>-CH); 142.08 (<u>C</u>-CH); 169.39(<u>C</u>O); 195.54 (<u>C</u>S). UPLC retention time 8.50 min. MS calculated, 310.4170, found, 310.0669.

Synthesis of (Z)-5-(4-(pyridin-2-yl)benzylidene)-2-thioxothiazolidin-4-one (34).

Compound **34** was synthesized from 2-thioxothiazolidin-4-one and 4-(pyridin-2-yl)benzaldehyde exactly as described for compound **20** and isolated as a yellow solid in 68.8% yield. ¹H NMR (600 MHz, D₆-DMSO/TMS) δ 8.69 (d, J = 4.6 Hz, 1H), 8.23 (d, J = 8.2 Hz, 2H), 8.02 (d, J = 8.0 Hz, 1H), 7.90 (t, J = 7.6 Hz, 1H), 7.70–7.65 (m, 3H), 7.41–7.36 ppm (m, 1H). ¹³C NMR (600 MHz, D₆-DMSO/TMS) δ 121.30 (C-<u>C</u>H); 123.82 (C-<u>C</u>H); 127.81 (C-<u>C</u>H); 131.39 (<u>C</u>-CH); 131.43 (C-<u>C</u>H); 133.92 (<u>C</u>-CH); 137.98 (C-

<u>C</u>H); 140.78 (<u>C</u>-CH); 155.11 (<u>C</u>O). UPLC retention time 5.56 min. MS calculated, 299.02345, found, 298.9749.

Synthesis of (Z)-2-thioxo-5-((5-(3-(trifluoromethyl)phenyl)furan-2-yl)methylene)thiazolidin-4-one (**35**). Compound **35** was synthesized from 2-thioxothiazolidin-4-one and 5-(3-(trifluoromethyl)phenyl)furan-2-carbaldehyde exactly as described for compound **20** and isolated as a yellow solid in 69.0% yield. ¹H NMR (600 MHz, D₆-DMSO/TMS) δ 8.08 (s, 1H, H-7), 8.03 (d, J = 7.7 Hz, 1H), 7.77–7.70 (m, 2H), 7.47–7.45 (m, 2H), 7.27 ppm (d, J = 3.7 Hz, 1H). ¹³C NMR (600 MHz, D₆-DMSO/TMS) δ 111.98 (C-<u>C</u>H); 117.46 (C-<u>C</u>H); 121.07 (C-<u>C</u>H); 122.56 (C-<u>C</u>H); 123.35 (<u>C</u>-CH); 125.73 (C-<u>C</u>H); 128.25 (C-<u>C</u>H); 130.03 (<u>C</u>-CH); 130.47 (CF₃); 130.68 (CF₃); 131.03 (C-<u>C</u>H); 150.12 (<u>C</u>-CH); 156.13 (<u>C</u>-CH); 169.37(<u>C</u>O); 196.52 (<u>C</u>S). UPLC retention time 7.69 min. MS calculated, 355.99485, found, 356.0168.

Synthesis of (Z)-5-((6-methoxynaphthalen-2-yl)methylene)-2-thioxothiazolidin-4-one (**36**). Compound **36** was synthesized from 2-thioxothiazolidin-4-one and 6-methoxy-2-naphthaldehyde exactly as described for compound **20** and isolated as an orange solid in 68.4% yield. ¹H NMR (600 MHz, D₆-DMSO/TMS) δ 8.04 (s, 1H), 7.91 (dd, J = 8.8, 29.0 Hz, 2H), 7.68 (s, 1H, H-8), 7.56 (dd, J = 1.3, 8.6 Hz, 1H), 7.34 (d, J = 1.8 Hz, 1H), 7.22 (dd, J = 2.3, 9.0 Hz, 1H), 3.89 ppm (s, 3H, H-20). ¹³C NMR (600 MHz, D₆-DMSO/TMS) δ 55.93 (CH₃); 106.687 (C-<u>C</u>H); 120.26 (C-<u>C</u>H); 127.39 (C-<u>C</u>H)); 128.41 (C-<u>C</u>H); 128.70 (); 131.07 (<u>C</u>-CH); 132.04 (C-<u>C</u>H); 132.49 (C-<u>C</u>H); 135.69 (C-<u>C</u>H); 159.66 (CO). UPLC retention time 7.20 min. MS calculated, 302.02312, found, 301.9300.

Synthesis of (*Z*)-5-((4'-methyl-[1,1'-biphenyl]-4-yl)methylene)2-thioxothiazolidin-4-one (**37**). Compound **37** was synthesized from 2-thioxothiazolidin-4-one and 4'-methyl-[1,1'-biphenyl]-4carbaldehyde exactly as described for compound **20** and isolated as an off-white solid in 50.3% yield. ¹H NMR (600 MHz, D₆-DMSO/TMS) δ 11.10–11.07 (m, 1H, H-5), 7.84–7.82 (m, 3H, H-12, H-8, H-6), 7.70 (d, J = 8.2 Hz, 2H, H-11, H-9), 7.66–7.62 (m, 2H, H-18, H- 14), 7.33–7.29 (m, 2H, H-17, H-15), 2.37 ppm (s, 3H, H-19). ¹³C NMR (600 MHz, D₆-DMSO/TMS) δ 21.18 (CH₃); 123.61 (<u>C</u>-CH); 127.08 (C-<u>C</u>H); 127.54 (C-<u>C</u>H); 130.15 (C-<u>C</u>H); 131.15 (C-<u>C</u>H); 131.85 (C-<u>C</u>H); 132.24 (<u>C</u>-CH); 136.40 (<u>C</u>-CH);138.21 (<u>C</u>-CH); 142.19 (<u>C</u>-CH); 167.82 (<u>C</u>O); 168.26 (<u>C</u>O). UPLC retention time 7.61 min. MS, calculated, 294.3560, found, 294.1762.

Synthesis of (Z)-5-(4-(benzyloxy)benzylidene)-2-thioxothiazolidin-4-one (38).

Compound **38** was synthesized from 2-thioxothiazolidin-4-one and 4-(benzyloxy)benzaldehyde exactly as described for compound **20** and isolated as a yellow-orange solid in 16.8% yield. ¹H NMR (600 MHz, D₆-DMSO/TMS) δ 12.18 (s, 1H, H-5), 7.61–7.58 (m, 3H), 7.50 (d, J = 7.4 Hz, 2H), 7.40 (t, J = 7.6 Hz, 2H), 7.34 (t, J = 7.3 Hz, 1H), 7.23–7.20 (m, 2H), 5.20 ppm (s, 2H, H-16). ¹³C NMR (600 MHz, D₆-DMSO/TMS) δ 70.06 (CH₂); 116.36 (C-<u>C</u>H); 122.89 (<u>C</u>-CH); 126.17 (<u>C</u>-CH); 128.27 (C-<u>C</u>H); 128.50 (C-<u>C</u>H); 128.96 (C-<u>C</u>H); 132.27 (C-<u>C</u>H); 133.13 (C-<u>C</u>H); 136.92 (<u>C</u>-CH); 160.91 (<u>C</u>-CH); 169.88 (<u>C</u>O); 195.95 (<u>C</u>S). UPLC retention time 8.49 min. MS calculated, 328.03877, found, 328.0041.

Synthesis of (Z)-2-thioxo-5-(3,4,5-trimethoxybenzylidene)thiazolidin-4-one (**39**).

Compound **39** was synthesized from 2-thioxothiazolidin-4-one and 3,4,5-trimethoxybenzaldehyde exactly as described for compound **20** and isolated as a dark red-orange solid in 8.3% yield. ¹H NMR (600 MHz, D₆-DMSO/TMS) δ 12.21 (d, J = 20.6 Hz, 1H, H-17), 7.57 (s, 1H, H-13), 6.90 (s, 2H, H-2, H-6), 3.92 (s, 6H, H-12, H-10), 3.81 ppm (s, 3H, H-11). ¹³C NMR (600 MHz, D₆-DMSO/TMS) δ 56.56 (O-CH₃); 60.72 (O-CH₃); 108.51 (C-CH); 128.93 (C-CH); 132.51 (C-CH); 153.78 (CO). UPLC retention time 5.74 min. MS calculated, 312.02860, found, 311.9912.

Synthesis of (Z)-5-([1,1'-biphenyl]-4-ylmethylene)-2-thioxothiazolidin-4-one (40).

Compound **40** was synthesized from 2-thioxothiazolidin-4-one and [1,1'-biphenyl]-4-carbaldehyde exactly as described for compound **20** and isolated as a dark orange solid in 58.9% yield. ¹H NMR (600 MHz, D₆-DMSO/TMS) δ 12.31–12.20 (m, 1H, H-4), 7.88 (d, J = 8.2 Hz, 2H, H-14, H-18), 7.74 (dd, J = 7.9, 18.0 Hz, 4H, H-11, H-9, H-8, H-12), 7.68 (s, 1H, H-6), 7.50 (dd, J = 6.9, 8.2 Hz, 2H, H-17, H-15),

7.42 ppm (t, J = 7.3 Hz, 1H, H-16). ¹³C NMR (600 MHz, D₆-DMSO/TMS) δ 125.71 (<u>C</u>-CH); 127.22 (C-<u>C</u>H); 127.93 (C-<u>C</u>H); 128.81 (C-<u>C</u>H); 129.59 (C-<u>C</u>H); 131.62 (C-<u>C</u>H); 132.34 (<u>C</u>-CH); 139.11 (<u>C</u>-CH); 142.54 (<u>C</u>-CH); 169.93 (<u>C</u>O); 196.00 (<u>C</u>S). UPLC retention time 7.85 min. MS calculated, 298.3900, found, 297.9619.

Synthesis of (Z)-2-thioxo-5-(2-(trifluoromethyl)benzylidene)thiazolidin-4-one (41).

Compound **41** was synthesized from 2-thioxothiazolidin-4-one and 2-(trifluoromethyl)benzaldehyde exactly as described for compound **20** and isolated as a an off-white solid in 60.7% yield. ¹H NMR (600 MHz, D₆-DMSO/TMS) δ 12.41 (s, 1H, H-15), 7.92–7.81 (m, 3H, H-5, H-3, H-2), 7.76–7.69 ppm (m, 2H, H-6, H-4). ¹³C NMR (600 MHz, D₆-DMSO/TMS) δ 123.39 (C-CH); 125.21 (C-CH); 125.90 (C-CH); 127.02 (C-CH); 127.29 (C-CH); 127.33 (C-CH); 127.37(C-CH); 128.03 (CF₃); 128.23 (CF₃); 128.42 (CF₃); 128.62 (CF₃); 129.77 (C-CH); 131.04 (C-CH); 131.35 (C-CH); 131.67 (C-CH); 133.96 (C-CH), 169.27 (CO); 196.06 (CS). UPLC retention time 6.68 min. MS calculated, 287.98429, found, 288.0781.

Synthesis of (Z)-2-thioxo-5-(2-(trifluoromethoxy)benzylidene)thiazolidin-4-one (42).

Compound **42** was synthesized from 3-methyl-2-thioxothiazolidin-4-one and 4'-methoxy-[1,1'-biphenyl]-4-carbaldehyde exactly as described for compound **20** and isolated as a an off-white solid in 70.6% yield. ¹H NMR (600 MHz, D₆-DMSO/TMS) δ 12.40 (s, 1H, H-14), 7.76 (s, 1H, H-6), 7.70–7.59 (m, 3H, H-10, H-11, H-12), 7.53 ppm (d, J = 8.3 Hz, 1H, H-9). ¹³C NMR (600 MHz, D₆-DMSO/TMS) δ 122.29 (C-<u>C</u>H); 123.06 (C-<u>C</u>H); 126.62 (<u>C</u>-CH); 128.96 (C-<u>C</u>H); 129.83 (C-<u>C</u>H); 129.88 (<u>C</u>-CH); 132.94 (C-<u>C</u>H); 147.50 (<u>C</u>-CH); 169.56 (<u>C</u>O); 195.80 (<u>C</u>S). UPLC retention time 6.93 min. MS calculated, 304.2892, measured 304.0848.

Synthesis of (Z)-3-methyl-5-((4'-methyl-[1,1'-biphenyl]-4-yl)methylene)-2-thioxothiazolidin-4-one (**43**). Compound **43** was synthesized from 4'-methyl-[1,1'-biphenyl]-4-carbaldehyde exactly as described for compound **24** and isolated as a yellow solid in 30.1% yield. 1H NMR (600 MHz, D₆-acetone): δ 7.88–7.85 (m, 2H, H-11, H-15), 7.80 (s, 1H, H-9), 7.72 (d, J = 8.2 Hz, 2H, H-14, H-12), 7.66–7.64 (m, 2H, H-21, H-17), 7.32 (d, J = 8.0 Hz, 2H, H-20, H-18), 3.49 (s, 3H, H-8), 2.38 ppm (s, 3H, H-22). ¹³C NMR (600 MHz, D₆-DMSO/TMS) δ 21.20 (CH₃); 31.68 (CH₃); 127.15 (C-<u>C</u>H); 127.43 (C-<u>C</u>H); 130.21 (C-<u>C</u>H); 131.84 (C-<u>C</u>H); 132.22 (<u>C</u>-CH); 132.87 (C-<u>C</u>H); 138.42 (<u>C</u>-CH). UPLC retention time 9.49min. MS calculated, 326.4440, measured 326.0348.

Synthesis of (Z)-2-(5-((4'-methyl-[1,1'-biphenyl]-4-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid (**44**).

Compound **44** was synthesized from 4'-methyl-[1,1'-biphenyl]-4-carbaldehyde exactly as described from compound **24** and isolated as a yellow solid. 1H NMR (600 MHz, D₆-Acetone): δ 7.89–7.85 (m, 3H, H-11, H-15, H-9), 7.75 (d, J = 8.2 Hz, 2H, H-12, H-14), 7.67–7.65 (m, 2H, H-17, H-21), 7.32 (d, J = 7.8 Hz, 2H, H-18, H-20), 4.85 (s, 2H, H-8), 2.38 ppm (s, 3H, H-22). ¹³C NMR (600 MHz, D₆-DMSO/TMS) δ 47.05 (CH₃); 127.14 (C-<u>C</u>H); 127.71 (C-<u>C</u>H); 130.18 (C-<u>C</u>H); 131.85 (C-<u>C</u>H); 132.16 (<u>C</u>-CH); 133.16 (C-<u>C</u>H); 136.26 (<u>C</u>-CH); 138.39 (<u>C</u>-CH);142.72 (<u>C</u>-CH); 167.09 (<u>C</u>O); 167.59 (<u>C</u>OOH); 193.50 (<u>C</u>S). UPLC retention time 8.20 min. MS calculated, 368.4530, measured 368.2621.

Synthesis of (Z)-5-((4'-methoxy-[1,1'-biphenyl]-4-yl)methylene)-2-thioxothiazolidin-4-one (**45**). Compound **45** was synthesized from 4'-methoxy-[1,1'-biphenyl]-4-carbaldehyde exactly as described from compound **24** and isolated as an orange solid. 1H NMR (600 MHz, D₆-DMSO): δ 7.81 (d, J = 8.2 Hz, 2H), 7.73–7.63 (m, 5H), 7.05 (d, J = 8.6 Hz, 2H), 3.80 ppm (s, 3H, H-22). ¹³C NMR (600 MHz, D₆-DMSO/TMS) δ 55.72 (O-<u>C</u>H₃); 115.05 (C-<u>C</u>H); 127.30 (C-<u>C</u>H); 128.49 (C-<u>C</u>H); 131.18 (C-<u>C</u>H); 131.47 (<u>C</u>-CH); 131.60 (C-<u>C</u>H); 131.88 (<u>C</u>-CH); 142.10 (<u>C</u>-CH); 160.09 (<u>C</u>O). UPLC retention time 7.69min. MS calculated, 328.03877, measured 328.0452.

Synthesis of (Z)-5-((4'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl)methylene)-2-thioxothiazolidin-4-one (**46**). Compound **46** was synthesized from 4'-(trifluoromethyl)-[1,1'-biphenyl]-4-carbaldehyde exactly as described from compound **24** and isolated as an off white solid. 1H NMR (600 MHz, D₆-DMSO): δ 7.94 (dd, J = 8.3, 28.4 Hz, 4H), 7.85–7.82 (m, 3H), 7.74–7.71 ppm (m, 2H). ¹³C NMR (600 MHz, D₆- DMSO/TMS) δ 124.57 (<u>C</u>-CH); 126.33 (C-<u>C</u>H); 128.07 (C-<u>C</u>H); 128.26 (C-<u>C</u>H); 131.17 (C-<u>C</u>H); 131.45 (C-<u>C</u>H); 133.55 (<u>C</u>-CH); 140.46 (<u>C</u>-CH); 143.31 (<u>C</u>-CH); 167.76 (<u>C</u>O); 168.17 (<u>C</u>O). UPLC retention time 7.69 min. MS calculated, 349.03843, measured 342.0713.

Physicochemical Properties

Compound	Structure	MW	CLogP	tPSA	pKa*
1		309.42	2.871	61.14	4.7, 4.8, 7.1, 11.4, 11.9
2		343.43	3.472	61.14	4.4, 4.6, 7.1, 11.1, 11.3
3		309.42	2.105	61.47	4.8, 5.0, 7.0, 7.9, 11.0
4		309.42	2.901	61.14	4.6, 5.1, 7.2, 11.4, 11.8
5		594.59	8.470	53.99	
6		378.53	6.173	55.45	5.3, 7.1
7		411.50	2.062	94.14	1.9, 2.2, 3.0, 12.1
8		290.70	2.515	63.60	5.1
9	но он но он	302.24	0.445	127.45	6.0, 6.2, 6.3, 6.4, 6.4
10	OH OH N CH ₃	317.34	2.851	69.89	4.0, 4.4, 6.5
11		364.66	2.767	40.54	2.0, 6.0
12		333.29	3.869	55.40	7.3
13		333.79	3.800	72.06	8.1, 8.8
14	$H_3C^{O} \rightarrow C + 3$ $H_3C^{O} \rightarrow $	445.51	0.388	89.46	1.9, 3.2, 12.3
15		488.53	1.628	114.40	1.8, 4.1, 13.1
16	CI S S C OH	392.83	3.836	92.35	5.4

Table S1. Structures of CD38 Inhibitors and their Activity Against CD38 Cyclase

		-			
20		318.37	1.798	59.92	6.5
21		299.38	0.161	68.9	7.5
22		309.25	2.83	38.33	7.5
23		289.29	2.685	29.10	7.5
24		341.44	3.945	29.54	2.0
25	s N O s C N	272.34	1.689	41.46	3.8, 6.4
26	s-N-0 s-C-0	311.37	3.746	38.33	7.7
27	s-L-o-o	313.39	3.9	38.33	7.7
28	s to s	279.33	1.556	47.56	7.6
29	S X CHa	311.43	1.556	47.56	7.5
30		350.79	2.197	59.92	1.6, 6.2
31	s, N, O, S	309.40	3.735	29.1	7.8
32		365.39	4.573	29.1	7.7
33	S N O S C CH ₃	311.42	4.189	29.1	7.7
34	S N S S S S S S S S S S S S S S S S S S	298.38	2.403	41.46	4.3, 7.6
35		355.35	3.959	38.33	7.3
36		301.38	2.895	38.33	7.5
37	0 N 0 S − 	295.36	4.099	46.17	7.5
38	s, N, o s, C, O, C, S	327.42	3.489	38.33	7.7

39	S S S OMe OMe	311.37	0.859	56.79	7.3
40	s to s	297.39	3.69	29.1	7.7
41	$S \xrightarrow{H}_{F_3C} O$	289.29	2.685	29.1	7.5
42		305.29	2.83	38.33	7.3
43	CH ₃ S N O S CH ₃	325.44	4.525	20.31	2.0
44		369.45	3.815	57.61	1.8, 3.7
45	S S K S C C C O C H ₃	327.42	3.609	38.33	7.7
46	osti co s-C-C-FF	349.33	4.483	46.17	7.5

cLogP and tPSA values are estimated using ChemDraw 20.0; pKa values were estimated using the MolGpKa software routine: <u>https://xundrug.cn/molgpka</u> (J. Chem. Inf. Modeling **2021**, 67 (7), 3159-3165).

Enzyme Assay

CD38 cyclase activity. Compounds were screened for the ability to inhibit the cyclase activity of recombinant human CD38 in a fluorometric assay. In brief, recombinant CD38 was diluted to a working concentration of 40 nM (4x) in assay diluent (PBS, 0.002% Tween-20, pH7.4) and 25 μ L were pipetted into a black 96 well plate. Screening compounds were diluted using assay diluent to 4x the desired screening concentration and 25 μ L of this mixture was added to each wells. DMSO was screened as a vehicle control. After 15 mins incubation on an orbital shaker, 50 μ L of a 50 μ M solution of NGD⁺ (2x) was added to each well, initiating the reaction. The final concentration of CD38 and NGD⁺ in the reaction are, 10 nM and 25 μ M respectively. With an excitation at 300nm and 410nm emission, the reaction was monitored for 10 mins. Initial rates (velocities) were calculated by determining the slope over the first 5 mins. Mean fluorescence for the vehicle treated control was used to normalize each treatment group, and values were expressed as percent activity of CD38. Each assay was conducted in at least technical duplicates and experimental triplicates and compared to the literature described CD38 cyclase inhibitor quercetin (Q).

CD38 hydrolase activity. The hydrolase screening assay was conducted using the same procedure as the cyclase screen, substituting $20\mu M \epsilon$ -NAD⁺ working solution for NGD⁺, resulting in a final concentration of $10\mu M$. Initial rates were calculated for the first 2.5mins.

Dose dependence and kinetic mechanism of inhibition. Selected hit compounds were assayed for dose dependent inhibition of CD38 cyclase using the general workflow described above at concentrations between 0 and 100 μ M. Serial dilutions of each compound were adjusted to establish an eight-point concentration curve. Likewise, Michalis-Menton enzyme kinetics were assessed by varying substrate (8-point curve) and compound concentrations. All enzyme reactions were kept at a standard ratio of CD38/compound/substrate (4x/4x/2x). Data from each experiment was collected in technical and experimental triplicates.

Cell Culture

Primary culture. All PBMC and T cells were cultured in accordance with the <u>Stem Cell Technology</u> T-cell Expansion Protocol. In brief, for expansion of T cells in PBMC cultures, an initial culture was seeded at 1 X 10⁶ cells/mL in ImmunoCult XF expansion media with 3-10 ng/mL of IL-2 (complete media). The culture was diluted 4- to 8-fold every 2 to 3 days with complete media.

T cell activation. PBMCs were cultured as above with the addition of 20 μ L/mL of anti-CD3/CD38 tetramer on day 0. Activated T cell cultures were maintained for 14 days on average. For re-stimulation challenges, 20 μ L/mL of anti-CD3/CD28 was added to activated T cells (day 9-12).

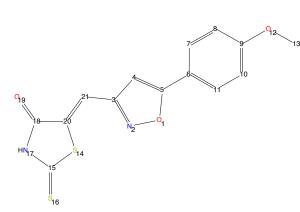
PBMC toxicity. Cytotoxicity of CD38 hit inhibitors were assessed against T cell activated PBMCs. After a 48 hr treatment, cell viability was assessed using CellTiter-Glo (<u>Promega</u>), with all experiments performed according to the manufacturers directions. Viability was assessed in three separate donors. Experiments were conducted in triplicates and mean values normalized to vehicle treated controls.

Cytokine Analysis (Interferon-\gamma). T cells were activated and cultured as described above for 12 days. Secreted cytokines were measured in the supernatants from T cells by ELISA (<u>Biolegend</u>). For acute T cell activity and screening of CD38 inhibitors, supernatants were analyzed 48 hrs post-activation. Supernatants were also collected on day 14, 48 hrs after restimulation of T cell cultures to assess effects of CD38 inhibitors in a re-challenge/expansion model. Initial interferon- γ screens were conducted with a single donor in triplicate and results recorded as percent difference from vehicle treated control. Screening of novel CD38 inhibitors was conducted with three donors and presented as mean percent difference from vehicle treated control.

Cellular NADH levels. Cellular NADH levels were measured using the NAD-Glo kit (<u>Promega</u>)— with all experiments performed according to the manufacturers directions. In short, NADH was measured in resting PBMCs, and PBMCs 30 and 60 mins after activation.

CMM210212 TZB-001

Consistency: Unknown*, unknown


purity*

Data set 1H:
Structure:
Acquisition date:
Solvent:
Probe:
Eretic reference:

CMM210212 1 1 /opt/topspin4.1.3 /opt/topspin4.1.3/CMM210212/1/structure.mol February 12, 2021 9:08:39 AM EST DMSO 5 mm PATXI 1H/D/19F-13C/15N Z-GRD Z855801/0017

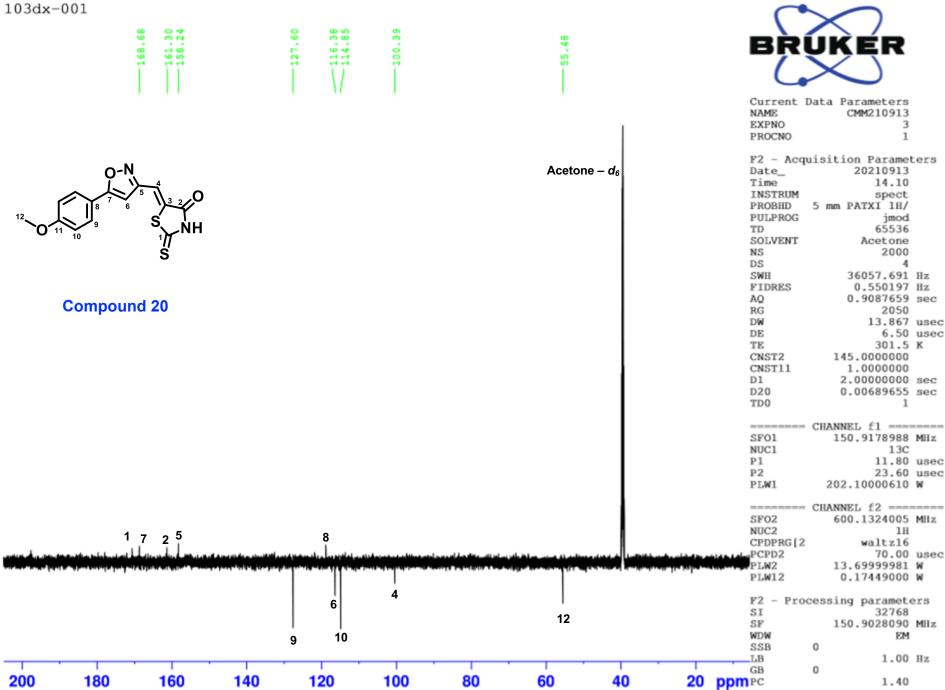
Comments:

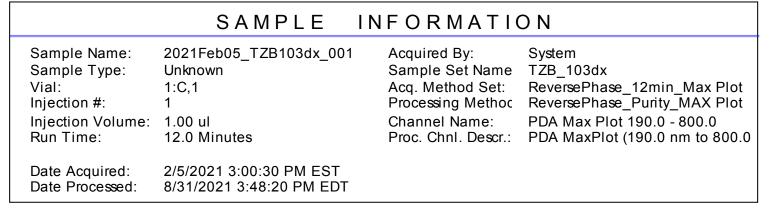
Multiplet interpretation available for spectrum. A multiplet interpretation for all major signals in the spectrum could be found. All given impurities could be assigned to regions in the spectrum.

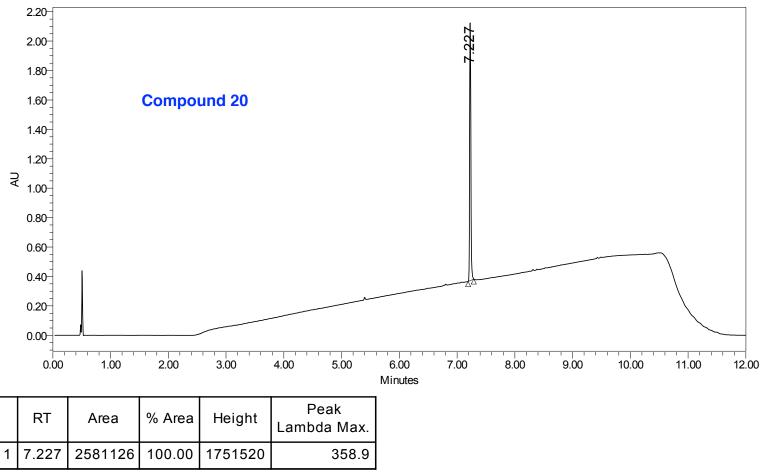
 $\begin{array}{l} Sum \ formula: \\ C_{14}H_{10}N_2O_3S_2 \end{array}$

Molecular Mass: 318.01 Da

Automatic analysis generated by Bruker CMC (b:17). One or more results have not been created by automatic analysis, or edited manually: marked by '*'. Report generated by Bruker CMC-assist TopSpin 4.1.3 (of 2021-06-28 13:00:50), on 'MacBook-Pro.local' as 'tzbenton'


Compound 20

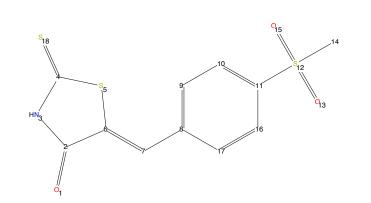

Signature:


7.83 [7, 11] *

[21] * [4] * [10, 8] * 7.49 7.22 7.10

Signature:

CMM210212 TZB-002

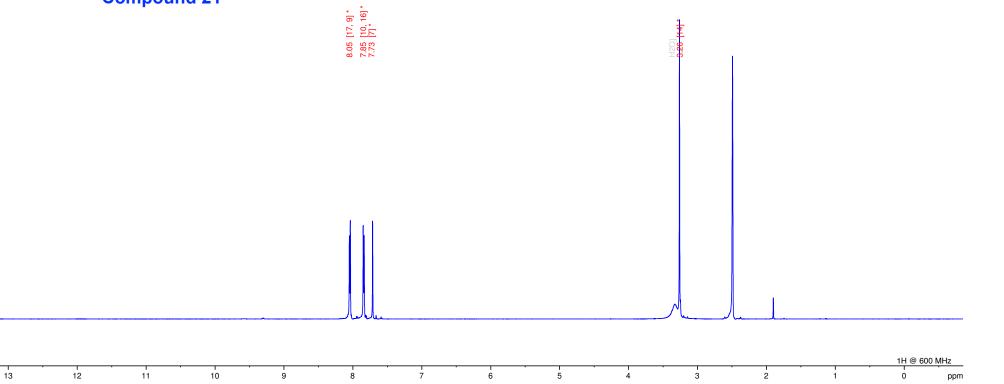

Consistency: Unknown*, unknown

purity*

Data set 1H: Structure: Acquisition date: Solvent: Probe: Eretic reference: CMM210212 5 1 /opt/topspin4.1.3 /opt/topspin4.1.3/CMM210212/5/structure.mol February 12, 2021 9:26:26 AM EST DMSO 5 mm PATXI 1H/D/19F-13C/15N Z-GRD Z855801/0017

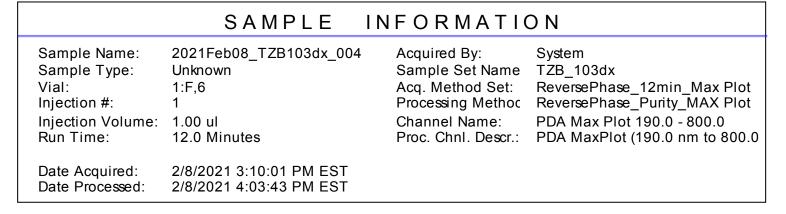
Comments:

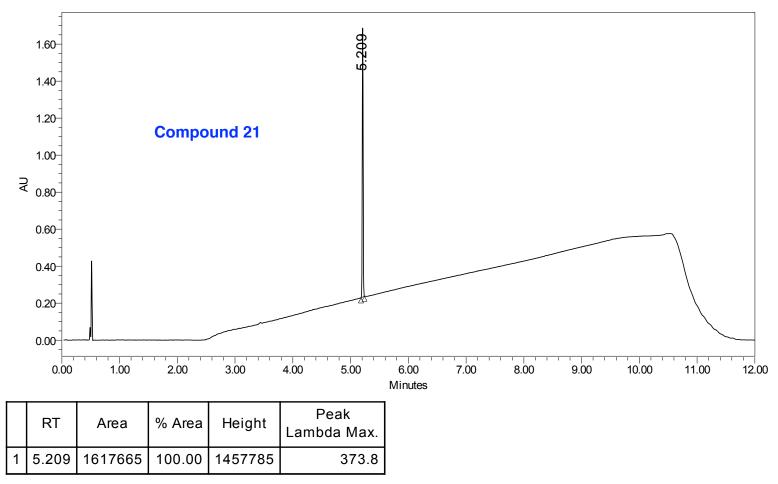
Multiplet interpretation available for spectrum. A multiplet interpretation for all major signals in the spectrum could be found. All given impurities could be assigned to regions in the spectrum.



Sum formula: C11H9NO3S3

Molecular Mass: 298.97 Da


Automatic analysis generated by Bruker CMC (b:17). One or more results have not been created by automatic analysis, or edited manually: marked by "". Report generated by Bruker CMC-assist TopSpin 4.1.3 (of 2021-06-28 13:00:50), on 'MacBook-Pro.local' as 'tzbenton'


Compound 21

21 (TZB103d)	(-002)		142.02 138.18 131.38 131.38			Ç)	43,60			C	UKER Data Parameters CMM210917
Compo 1	und 21 2	and the days ware set.	8 5 	O ,	S.O	4 3 6 S·	¹ NH √S	Dime	thyl sulfox	kide – d ₆	PROCNO	1 quisition Parameters 20210917 8.38 spect 5 mm PATXI 1H/ jmod 65536 DMSO 1000 4 36057.691 Hz
						Pet en el presente					FIDRES AQ RG DW DE TE CNST2 CNST11 D1 D20 TD0	0.550197 Hz 0.9087659 sec 2050 13.867 usec 301.4 K 145.0000000 1.0000000 2.00000000 sec 0.00689655 sec 1
			2					9			SF01 NUC1 P1 P2 PLW1 	CHANNEL f1 150.9178988 MHz 13C 11.80 usec 23.60 usec 202.10000610 W CHANNEL f2 600.1324005 MHz 1H
200	180	160	7	6	100		60	40	20		CPDPRG[2 PCPD2 PLW2 PLW12 F2 - Pro SI SF WDW SSB LB GB	2 waltz16 70.00 usec 13.69999981 W 0.17449000 W ocessing parameters 32768 150.9028090 MHz EM 0 1.00 Hz

Signature:

73 [7. 18, 9] * 18 [10, 17] *

CMM210212 TZB-004

Consistency: Unknown*, unknown

purity*

Data set 1H: Structure: Acquisition date: Solvent: Probe: Eretic reference: CMM210212 6 1 /opt/topspin4.1.3 /opt/topspin4.1.3/CMM210212/6/structure.mol February 12, 2021 9:30:28 AM EST DMSO 5 mm PATXI 1H/D/19F-13C/15N Z-GRD Z855801/0017

Comments:

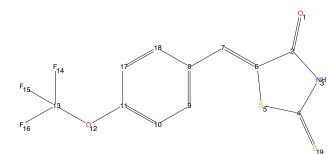
13

12

Sep 1, 2021 (7:58:55 AM)

11

10


9

8

7

Multiplet interpretation available for spectrum. A multiplet interpretation for all major signals in the spectrum could be found. All given impurities could be assigned to regions in the spectrum.

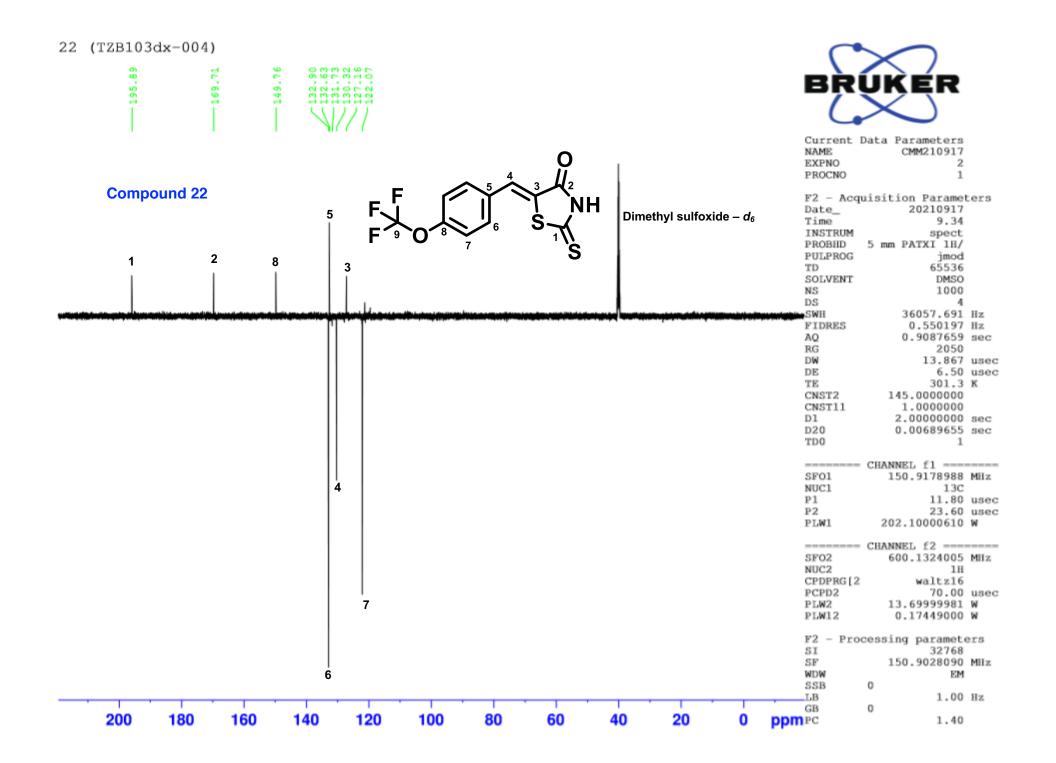
Sum formula: C11H6F3NO2S2

Molecular Mass: 304.98 Da

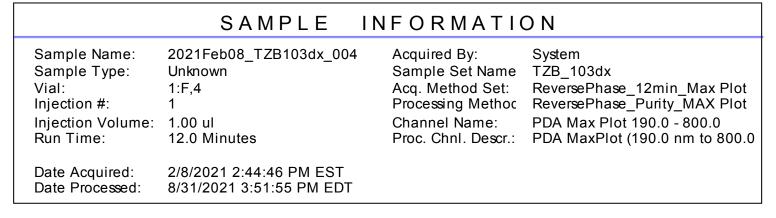
Automatic analysis generated by Bruker CMC (b:17). One or more results have not been created by automatic analysis, or edited manually: marked by ^{t*1}. Report generated by Bruker CMC-assist TopSpin 4.1.3 (of 2021-06-28 13:00:50), on 'MacBook-Pro.local' as 'tzbenton'

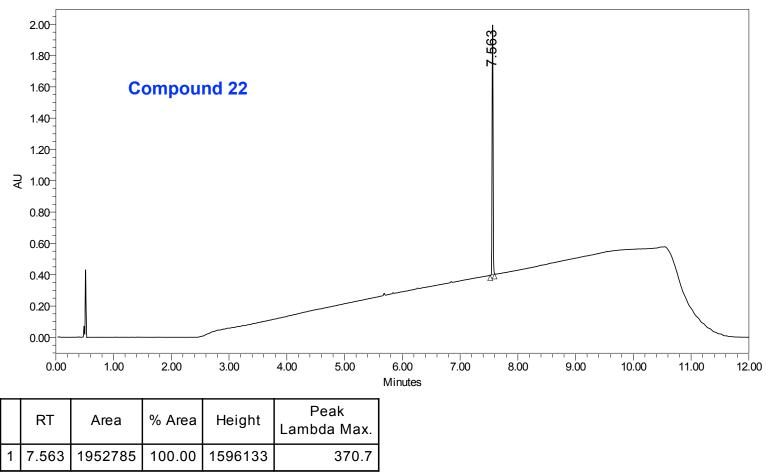
6

5


3

4

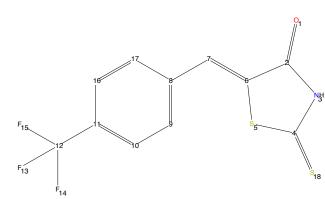

2


1H @ 600 MHz

ppm

Signature:

CMM210212 TZB-005

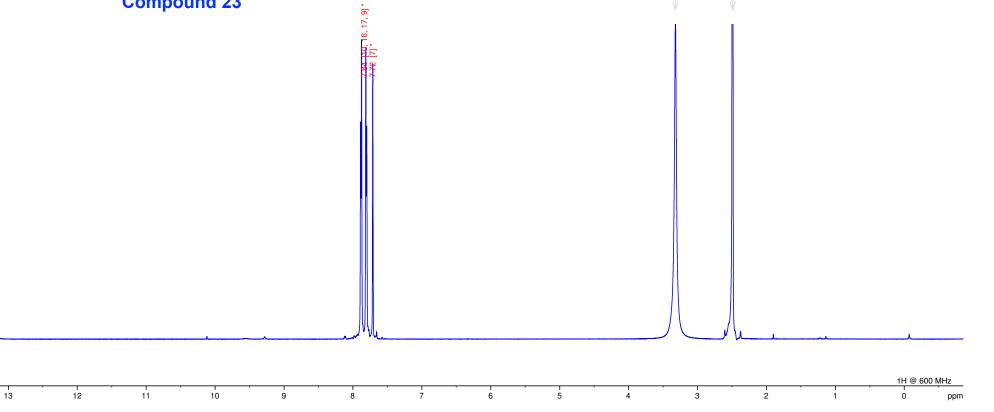

Consistency: Unknown*, unknown

purity*

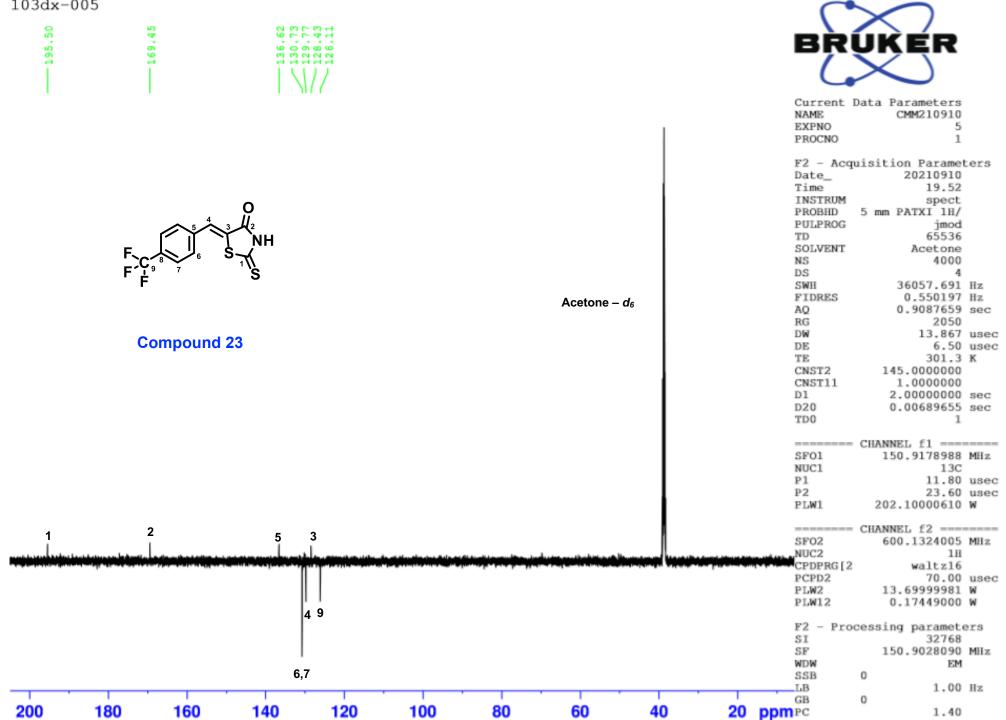
Data set 1H: Structure: Acquisition date: Solvent: Probe: Eretic reference: CMM210212 4 1 /opt/topspin4.1.3 /opt/topspin4.1.3/CMM210212/4/structure.mol February 12, 2021 9:22:19 AM EST DMSO 5 mm PATXI 1H/D/19F-13C/15N Z-GRD Z855801/0017

Comments:

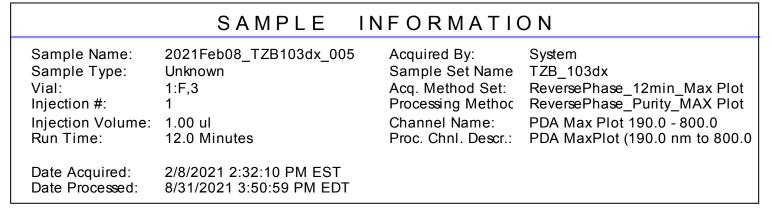
Multiplet interpretation available for spectrum. A multiplet interpretation for all major signals in the spectrum could be found. All given impurities could be assigned to regions in the spectrum.

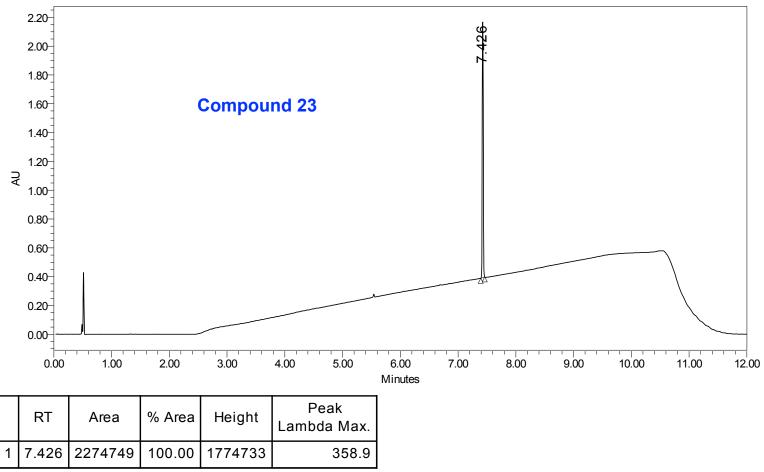


Sum formula: C11H6F3NOS2


Molecular Mass: 288.98 Da

Automatic analysis generated by Bruker CMC (b:17). One or more results have not been created by automatic analysis, or edited manually: marked by "". Report generated by Bruker CMC-assist TopSpin 4.1.3 (of 2021-06-28 13:00:50), on 'MacBook-Pro.local' as 'tzbenton'

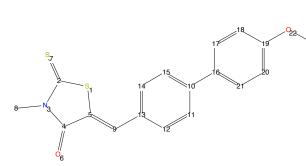

Compound 23



103dx-005

CMM210625 MJF-28

Consistency: Unknown*, unknown


purity*

Data set 1H: Structure: Acquisition date: Solvent: Probe: Eretic reference:

CMM210625 3 1 /opt/topspin4.1.3 /opt/topspin4.1.3/CMM210625/3/structure.mol June 25, 2021 2:40:32 PM EDT DMSO 5 mm PATXI 1H/D/19F-13C/15N Z-GRD Z855801/0017

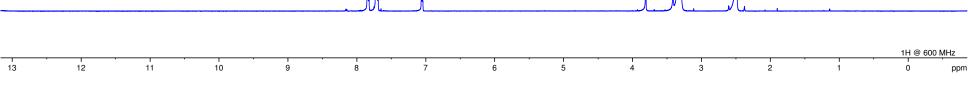
Comments:

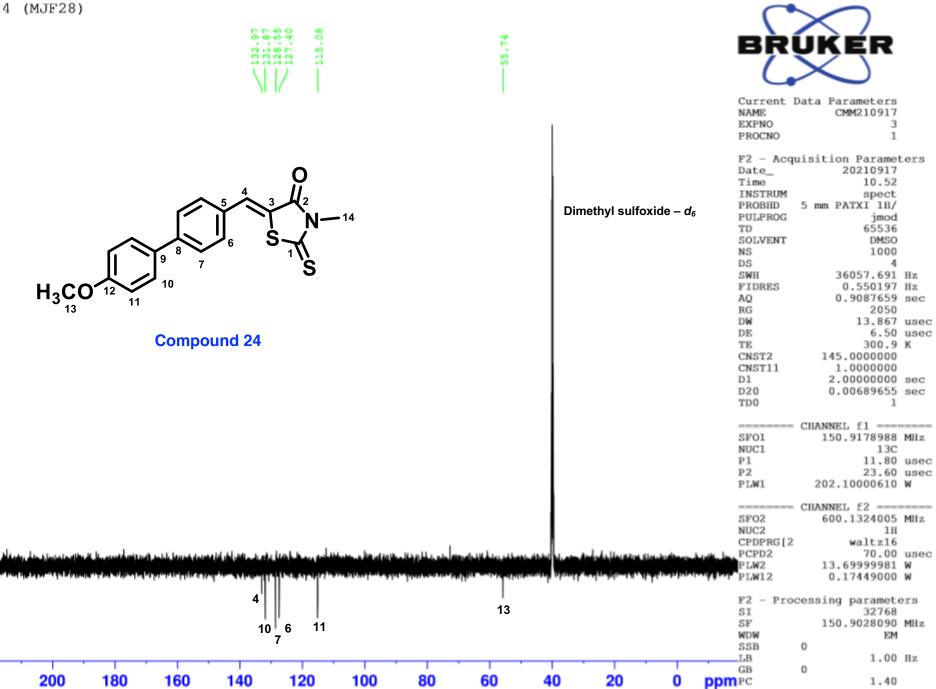
Multiplet interpretation available for spectrum. A multiplet interpretation for all major signals in the spectrum could be found. All given impurities could be assigned to regions in the spectrum.

œ

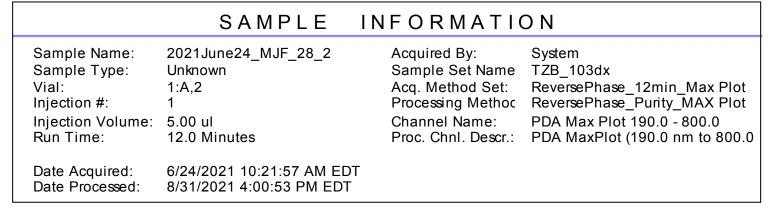
Sum formula: C18H15NO2S2

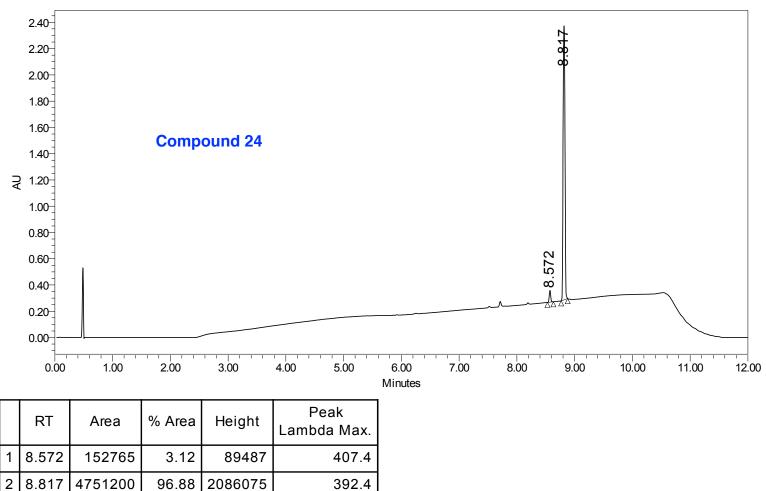
Molecular Mass: 341.05 Da


Automatic analysis generated by Bruker CMC (b:17). One or more results have not been created by automatic analysis, or edited manually: marked by ^{III}. Report generated by Bruker CMC-assist TopSpin 4.1.3 (of 2021-06-28 13:00:50), on ^{IM}acBook-Pro.local' as 'tzbenton'


7.84 [9, 12, 14]* 7.73 [18, 20, 15, 11] *

7.08 [17, 21] *


Signature:


Compound 24

Signature:

CMM210623

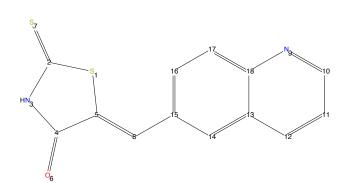
Consistency: Unknown*, unknown

purity*

Data set 1H: Structure: Acquisition date: Solvent: Probe: Eretic reference: CMM210623 3 1 /opt/topspin4.1.3 /opt/topspin4.1.3/CMM210623/3/structure.mol June 23, 2021 1:45:00 PM EDT DMS0 5 mm PATXI 1H/D/19F-13C/15N Z-GRD Z855801/0017

Comments:

13

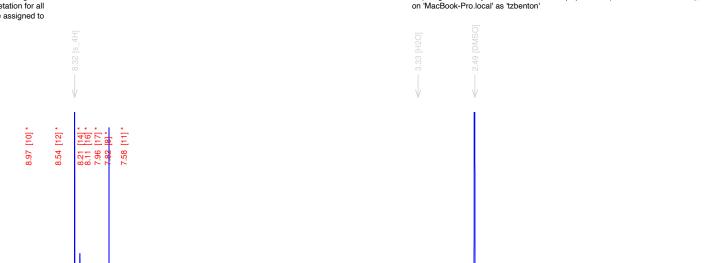

12

11

Multiplet interpretation available for spectrum.Multiplet interpretation available for spectrum.

Compound 25

A multiplet interpretation for all major signals in the spectrum could be found. All given impurities could be assigned to regions in the spectrum. A multiplet interpretation for all major signals in the spectrum could be found. All given impurities could be assigned to regions in the spectrum.



Sum formula: C13H8N2OS2

Molecular Mass: 272.01 Da

Automatic analysis generated by Bruker CMC (b:17). One or more results have not been created by automatic analysis, or edited manually: marked by ^{I*1}. Report generated by Bruker CMC-assist TopSpin 4.1.3 (of 2021-06-28 13:00:50),

5

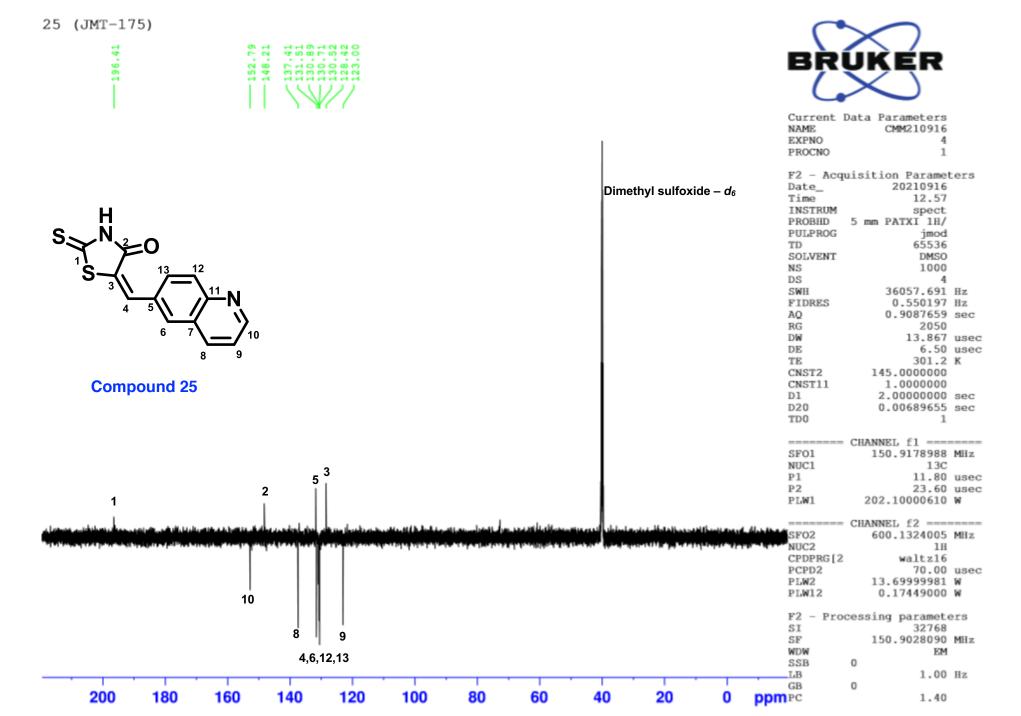
3

4

2

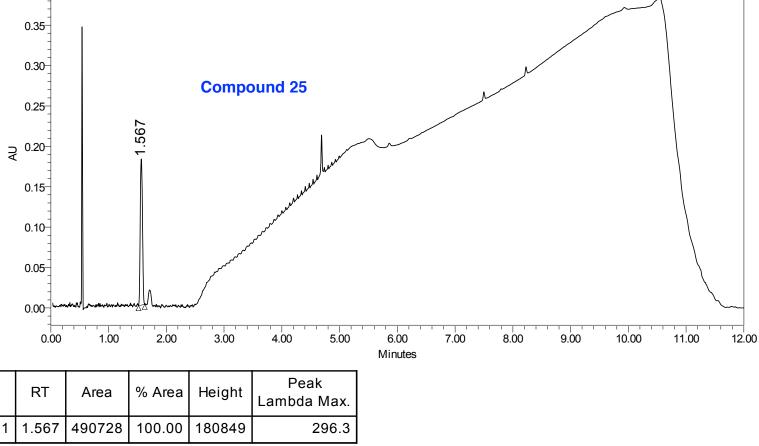
6

9


8

7

10

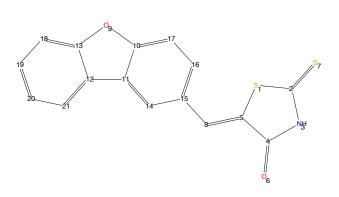

ppm

1H @ 600 MHz

	SAMPLE	INFORMATIO	NC
Sample Name: Sample Type: Vial: Injection #: Injection Volume: Run Time:	175 Unknown 1:B,7 1 1.00 ul 12.0 Minutes	Acquired By: Sample Set Name Acq. Method Set: Processing Methoc Channel Name: Proc. Chnl. Descr.:	System 103dx_JMT ReversePhase_12min_Max Plot ReversePhase_Purity_MAX Plot PDA Max Plot 190.0 - 800.0 PDA MaxPlot (190.0 nm to 800.0
Date Acquired: Date Processed:	7/28/2021 9:30:13 AM EDT 8/31/2021 4:08:39 PM EDT		
0.40			

CMM210622 JMT-166

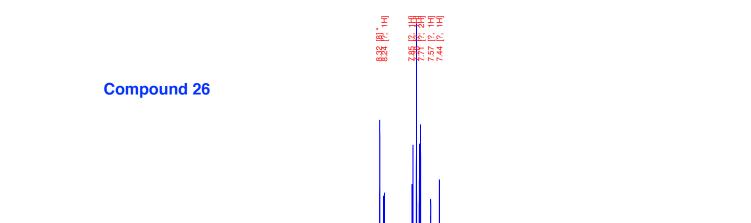
Consistency: Unknown*, unknown


purity*

Data set 1H: Structure: Acquisition date: Solvent: Probe: Eretic reference:

CMM210622 11 1 /opt/topspin4.1.3 /opt/topspin4.1.3/CMM210622/11/structure.mol June 22, 2021 12:06:35 PM EDT DMSO 5 mm PATXI 1H/D/19F-13C/15N Z-GRD Z855801/0017

Comments:


Multiplet interpretation available for spectrum. A multiplet interpretation for all major signals in the spectrum could be found. All given impurities could be assigned to regions in the spectrum.

Sum formula: C16H9NO2S2

Molecular Mass: 311.01 Da

Automatic analysis generated by Bruker CMC (b:17). One or more results have not been created by automatic analysis, or edited manually: marked by '*'. Report generated by Bruker CMC-assist TopSpin 4.1.3 (of 2021-06-28 13:00:50), on 'MacBook-Pro.local' as 'tzbenton'

Signature:

11

10

9

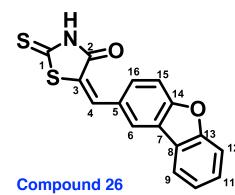
8

7

6

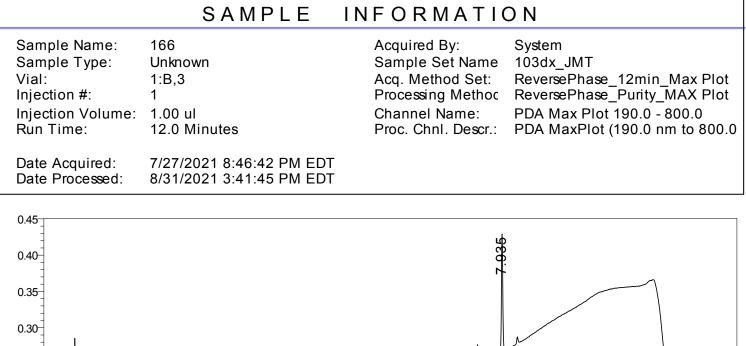
5

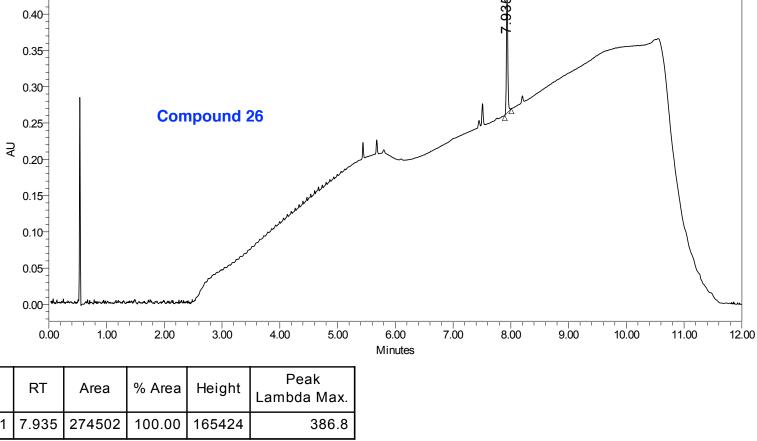
4


BR		KER
Current NAME	Data	Parameters CMM210916
EXPNO		2

1.40

LB GB PPMPC


		Current NAME EXPNO PROCNO	Data Parameters CMM210916 2 1	
	Dimethyl sulfoxide – <i>d</i> ₀	F2 - Acq Date_ Time INSTRUM	uisition Paramet 20210916 10.51 spect	lers
		PROBHD PULPROG TD SOLVENT	5 mm PATXI 1H/ jmod 65536 DMSO	
		NS DS SWH FIDRES	1000 4 36057.691 0.550197	Hz
$\frac{3}{9} \int_{11}^{12}$		AQ RG DW DE TE	0.9087659 2050 13.867 6.50 301.1	usec usec
10		CNST2 CNST11 D1 D20	145.000000 1.000000 2.0000000 0.00689655	sec
		TD0 SF01 NUC1	1 CHANNEL f1 150.9178988 13C	
		P1 P2 PLW1	11.80 23.60 202.10000610	usec
2 13 ¹⁴ 7	an an an an airthe that the second as a	SFO2 NUC2 CPDPRG[2	600.1324005 1H waltz16	MHz
an a	lajorite de la constitue de la constitue de la colongia de Colongia de la colongia d	PCPD2 PLW2 PLW12 F2 - Pro	70.00 13.69999981 0.17449000 cessing paramete	W W
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		SI SF WDW SSB	32768 150.9028090 EM	MHz
0,11 10		LB	1.00	Hz


132.32 130.66 129.066 125.24 125.24 123.90 123.18 123.18 112.36 -156.81

26 (JMT-166)

CMM210622

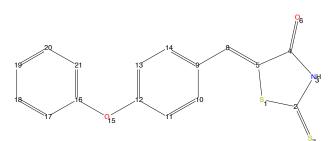
Consistency: Unknown*, unknown

purity*

Data set 1H: Structure: Acquisition date: Solvent: Probe: Eretic reference:

CMM210622 8 1 /opt/topspin4.1.3 /opt/topspin4.1.3/CMM210622/8/structure.mol June 22, 2021 11:43:17 AM EDT DMSO 5 mm PATXI 1H/D/19F-13C/15N Z-GRD Z855801/0017

Comments:


Multiplet interpretation available for spectrum.Multiplet interpretation available for spectrum.

A multiplet interpretation for all major signals in the spectrum could be found. All given impurities could be assigned to regions in the spectrum.A multiplet interpretation for all major signals in the spectrum could be found. All given impurities could be assigned to regions in the spectrum.

Signature:

7.14 [19, 17, 21, 11, 13] *

<mark>7.61 [8, 10</mark>, 14] * 7.46 [18, 20] *

Sum formula: C16H11NO2S2

Molecular Mass: 313.02 Da

Automatic analysis generated by Bruker CMC (b:17). One or more results have not been created by automatic analysis, or edited manually: marked by '*' Report generated by Bruker CMC-assist TopSpin 4.1.3 (of 2021-06-28 13:00:50), on 'MacBook-Pro.local' as 'tzbenton'

1H @ 600 MHz 0 ppm

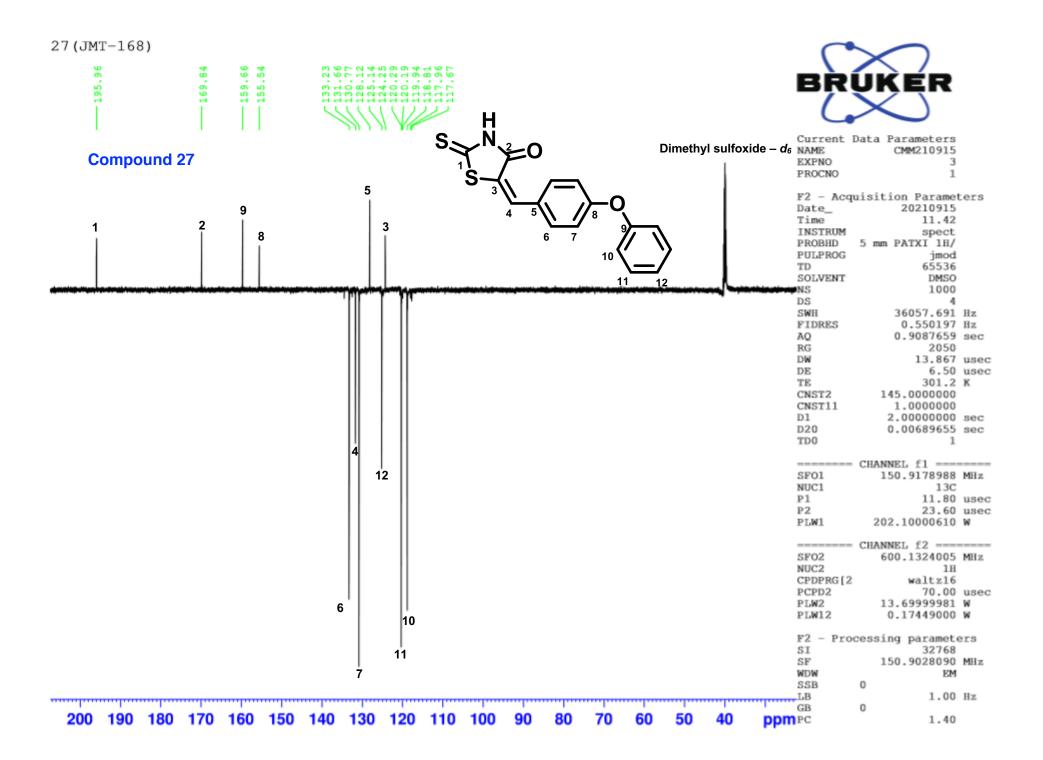
11

10

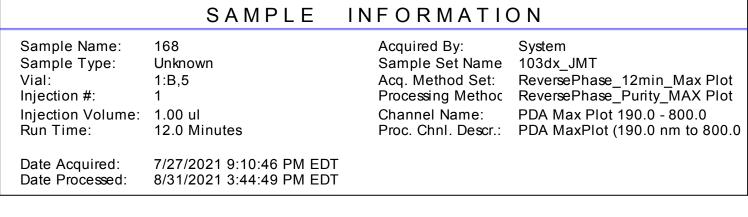
9

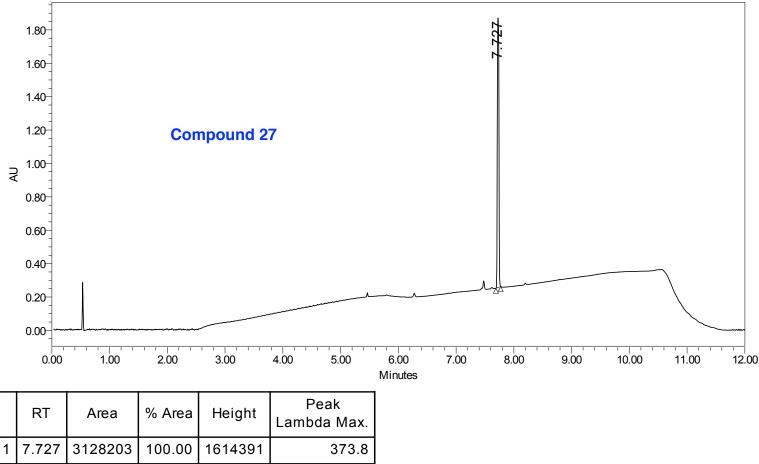
8

7


5

4


3

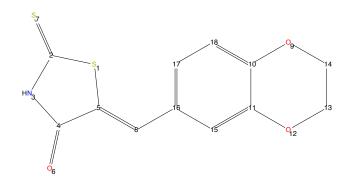

2

6

Signature:

CMM210622

Consistency: Unknown*, unknown

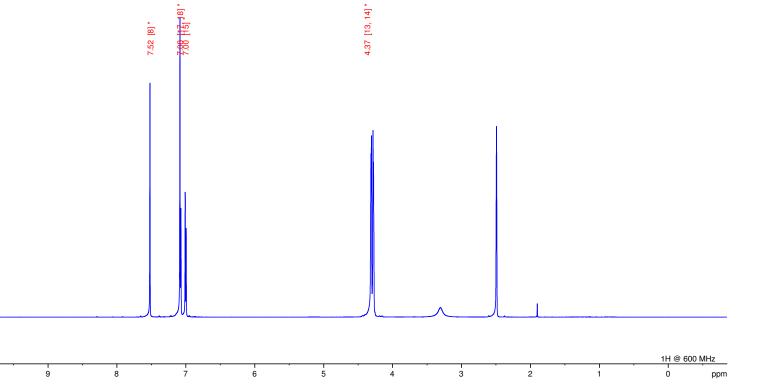

purity*

Data set 1H: Structure: Acquisition date: Solvent: Probe: Eretic reference:

CMM210622 5 1 /opt/topspin4.1.3 /opt/topspin4.1.3/CMM210622/5/structure.mol June 22, 2021 11:25:46 AM EDT DMSO 5 mm PATXI 1H/D/19F-13C/15N Z-GRD Z855801/0017

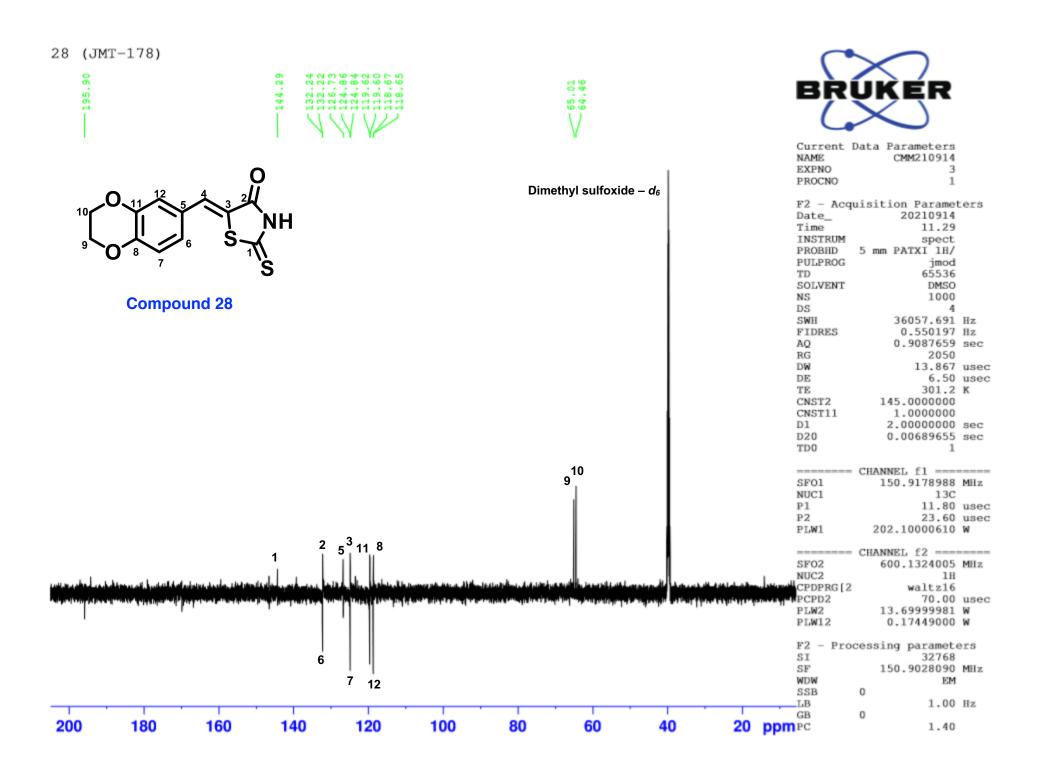
Comments:

Multiplet interpretation available for spectrum. A multiplet interpretation for all major signals in the spectrum could be found. All given impurities could be assigned to regions in the spectrum.

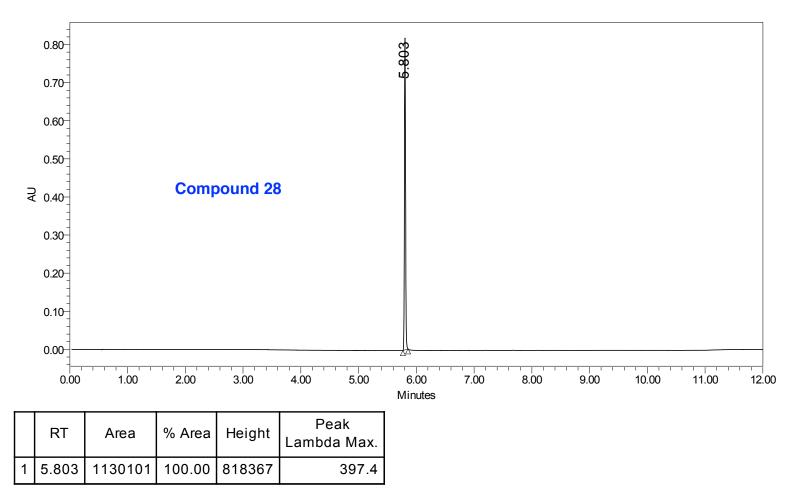


Sum formula: C12H9NO3S2

Molecular Mass: 279.00 Da


Automatic analysis generated by Bruker CMC (b:17). One or more results have not been created by automatic analysis, or edited manually: marked by '*'. Report generated by Bruker CMC-assist TopSpin 4.1.3 (of 2021-06-28 13:00:50), on 'MacBook-Pro.local' as 'tzbenton'

Compound 28


11

10

	SAMPLE I	NFORMATIO	N C
Sample Name:	178	Acquired By:	System
Sample Type:	Unknown	Sample Set Name	103dx_JMT
Vial:	1:C,2	Acq. Method Set:	ReversePhase_12min_Max Plot
Injection #:	1	Processing Methoc	ReversePhase_Purity_MAX Plot
Injection Volume:	1.00 ul	Channel Name:	400.0nm
Run Time:	12.0 Minutes		PDA 400.0 nm, Smoothed by 7
Date Acquired: Date Processed:	7/27/2021 10:13:28 PM EDT 8/31/2021 3:33:40 PM EDT		

Signature:

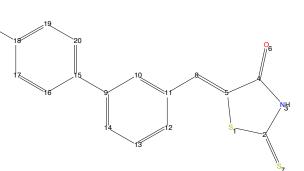
[8] * [10, 12, 13, 16, 20] * [14] * [17, 19] *

7.82 7.65 7.49 7.28

CMM210622

Consistency: Unknown*, unknown

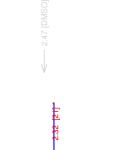
purity*


Data set 1H:
Structure:
Acquisition date:
Solvent:
Probe:
Eretic reference:

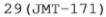
CMM210622 2 1 /opt/topspin4.1.3 /opt/topspin4.1.3/CMM210622/2/structure.mol June 22, 2021 11:08:05 AM EDT DMSO 5 mm PATXI 1H/D/19F-13C/15N Z-GRD Z855801/0017

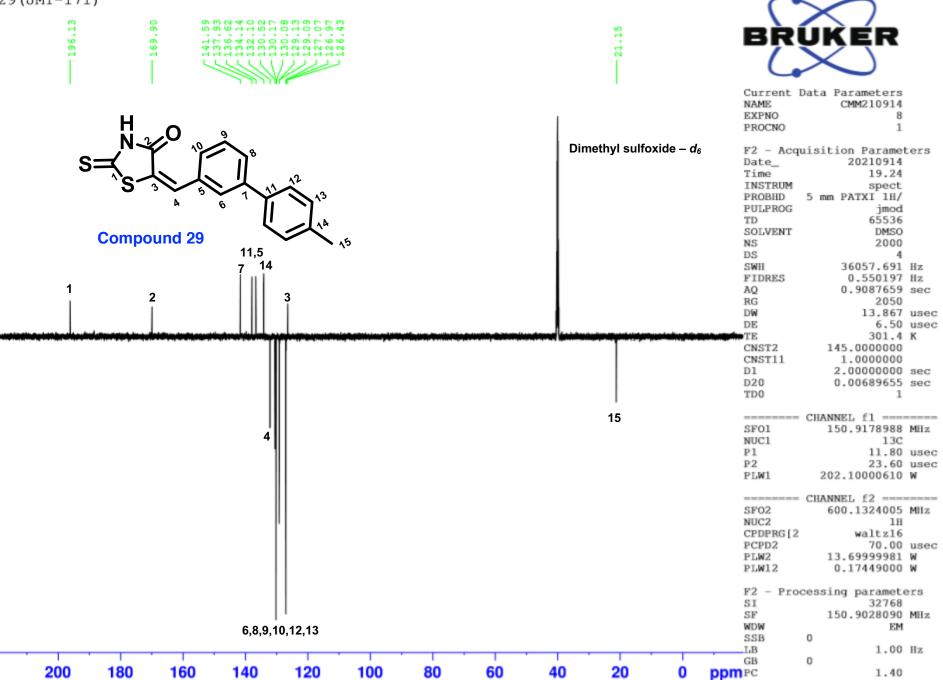
Comments:

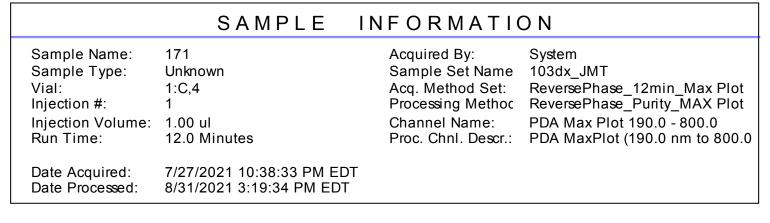
Multiplet interpretation available for spectrum. A multiplet interpretation for all major signals in the spectrum could be found. All given impurities could be assigned to regions in the spectrum.

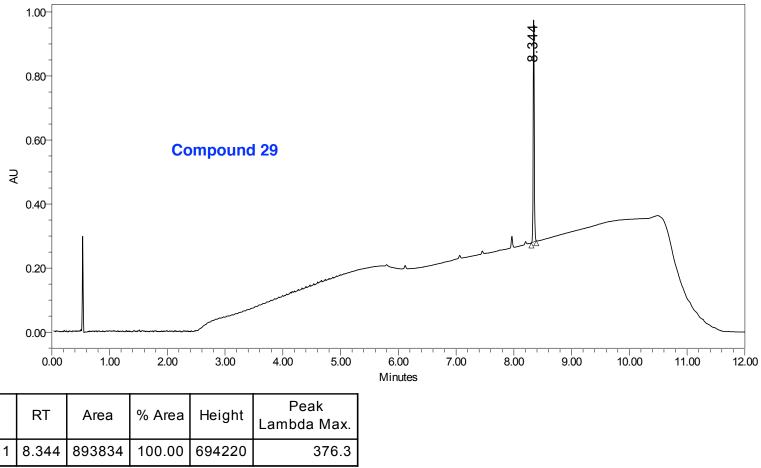


Sum formula: C17H13NOS2


Molecular Mass: 311.04 Da


Automatic analysis generated by Bruker CMC (b:17). One or more results have not been created by automatic analysis, or edited manually: marked by ^{III}. Report generated by Bruker CMC-assist TopSpin 4.1.3 (of 2021-06-28 13:00:50), on ^{IM}acBook-Pro.local' as 'tzbenton'

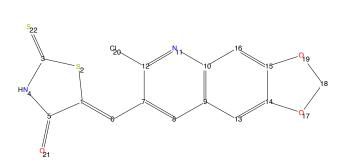



21

Signature:

² ¹3 ⁻ ^JM CMM210623

Consistency: Unknown*, unknown

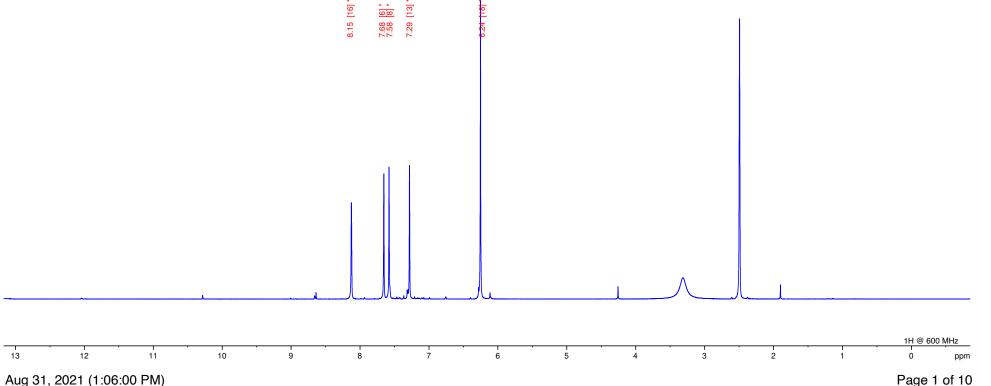

purity*

Data set 1H: Structure: Acquisition date: Solvent: Probe: Eretic reference:

CMM210623 5 1 /opt/topspin4.1.3 /opt/topspin4.1.3/CMM210623/5/structure.mol June 23, 2021 1:55:35 PM EDT DMSO 5 mm PATXI 1H/D/19F-13C/15N Z-GRD Z855801/0017

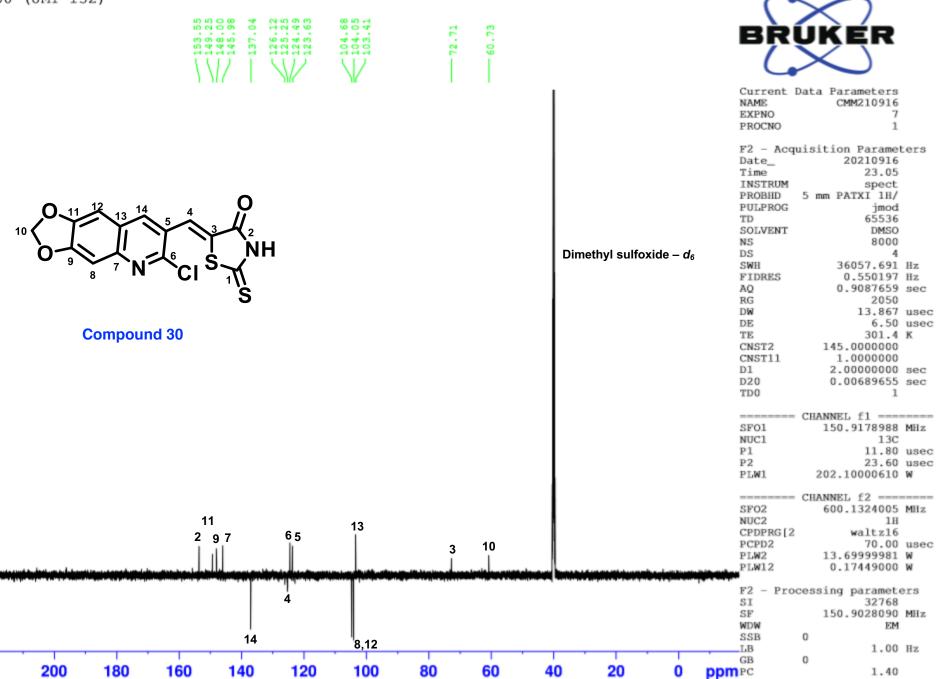
Comments:

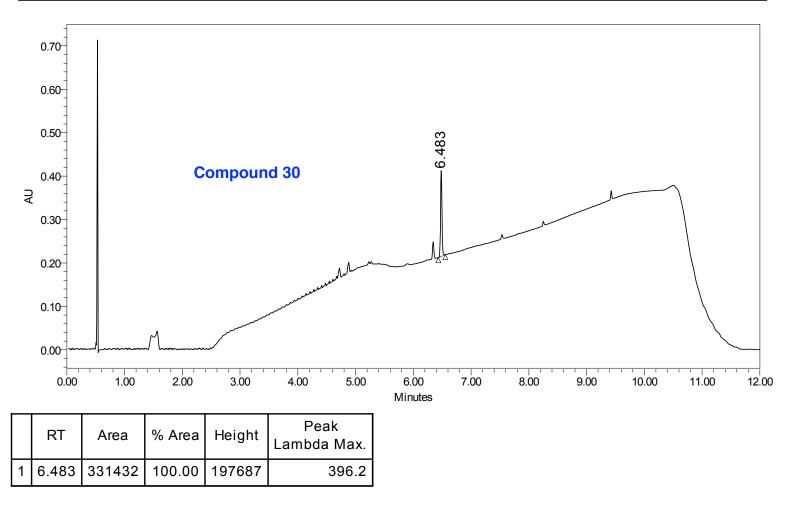
Multiplet interpretation available for spectrum. A multiplet interpretation for all major signals in the spectrum could be found. All given impurities could be assigned to regions in the spectrum.



Sum formula: C14H7CIN2O3S2

Molecular Mass: 349.96 Da


Automatic analysis generated by Bruker CMC (b:17). One or more results have not been created by automatic analysis, or edited manually: marked by '*'. Report generated by Bruker CMC-assist TopSpin 4.1.3 (of 2021-06-28 13:00:50), on 'MacBook-Pro.local' as 'tzbenton'


Page 1 of 10

30 (JMT-132)

	SAMPLE I	NFORMATIC	N C
Sample Name: Sample Type: Vial: Injection #:	132 Unknown 1:B,4 1	Acquired By: Sample Set Name Acq. Method Set: Processing Methoc	ReversePhase_12min_Max Plot
Injection #: Injection Volume: Run Time:	3.00 ul 12.0 Minutes	Channel Name:	PDA Max Plot 190.0 - 800.0 PDA MaxPlot (190.0 nm to 800.0
Date Acquired: Date Processed:	7/28/2021 12:10:19 PM EDT 8/31/2021 3:29:13 PM EDT		

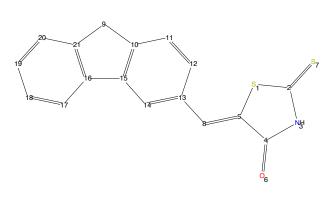
Signature:

²H] ²H] ²H] ²H] <u>100</u> 10 10 10 10 3.06 7.96 7.77 7.61

7.29

CMM210618 JMT-165

Consistency: Unknown*, unknown

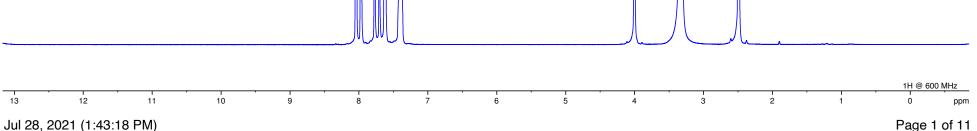

purity*

Data set 1H: Structure: Acquisition date: Solvent: Probe: Eretic reference:

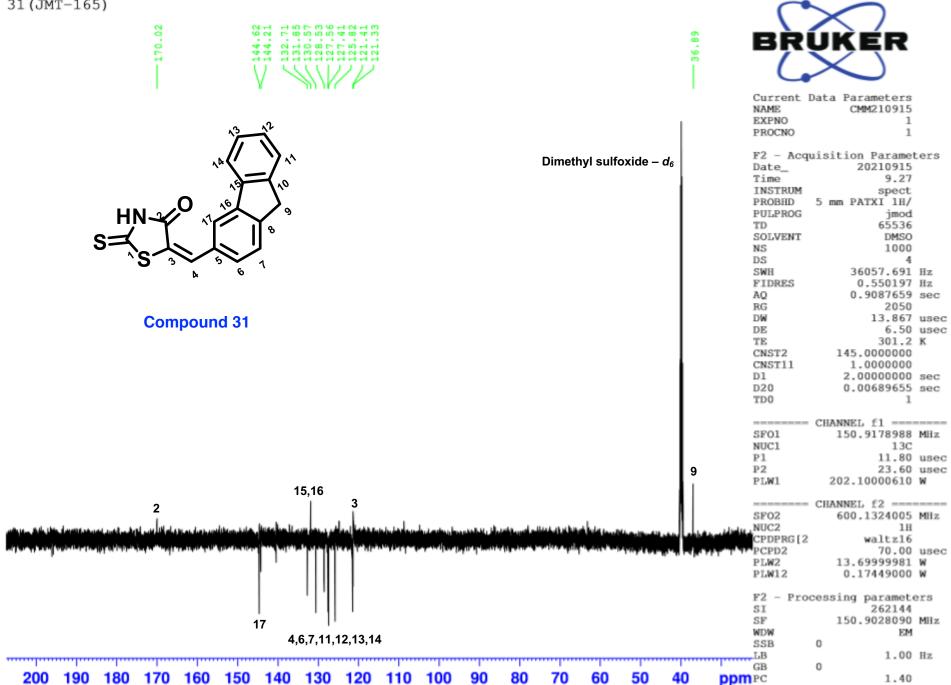
CMM210618 4 1 /opt/topspin4.1.3 /opt/topspin4.1.3/CMM210618/4/structure.mol June 18, 2021 3:25:08 PM EDT DMSO 5 mm PATXI 1H/D/19F-13C/15N Z-GRD Z855801/0017

Comments:

Multiplet interpretation available for spectrum. A multiplet interpretation for all major signals in the spectrum could be found. All given impurities could be assigned to regions in the spectrum.

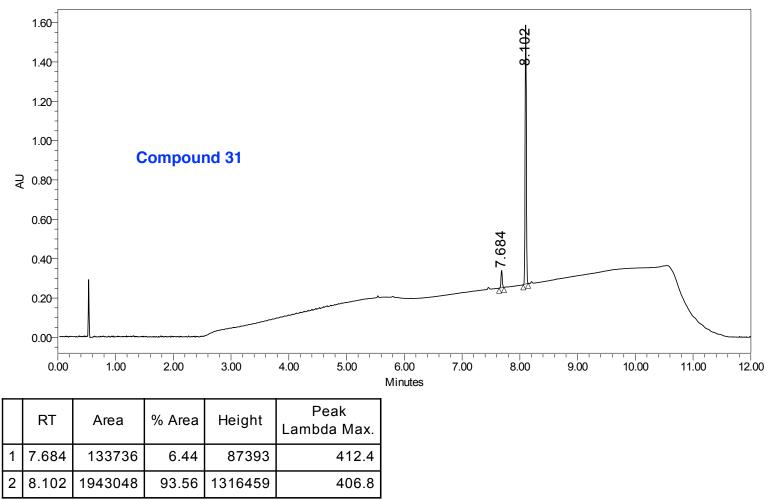


Sum formula: C17H11NOS2


Molecular Mass: 309.03 Da

Automatic analysis generated by Bruker CMC (b:17). One or more results have not been created by automatic analysis, or edited manually: marked by '*'. Report generated by Bruker CMC-assist TopSpin 4.1.3 (of 2021-06-28 13:00:50), on 'MacBook-Pro.local' as 'tzbenton'

Compound 31



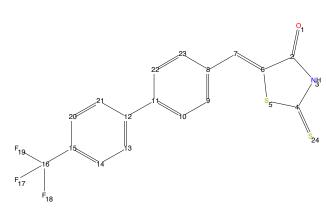
31 (JMT-165)

	SAMPLE I	NFORMATIO	O N
Sample Name:	165	Acq. Method Set:	System
Sample Type:	Unknown		103dx_JMT
Vial:	1:B,8		ReversePhase_12min_Max Plot
Injection #:	1		ReversePhase_Purity_MAX Plot
Injection Volume:	1.00 ul	Channel Name:	PDA Max Plot 190.0 - 800.0
Run Time:	12.0 Minutes		PDA MaxPlot (190.0 nm to 800.0
Date Acquired: Date Processed:	7/27/2021 9:48:22 PM EDT 8/31/2021 3:39:41 PM EDT		

Signature:

CMM210212

Consistency: Unknown*, unknown

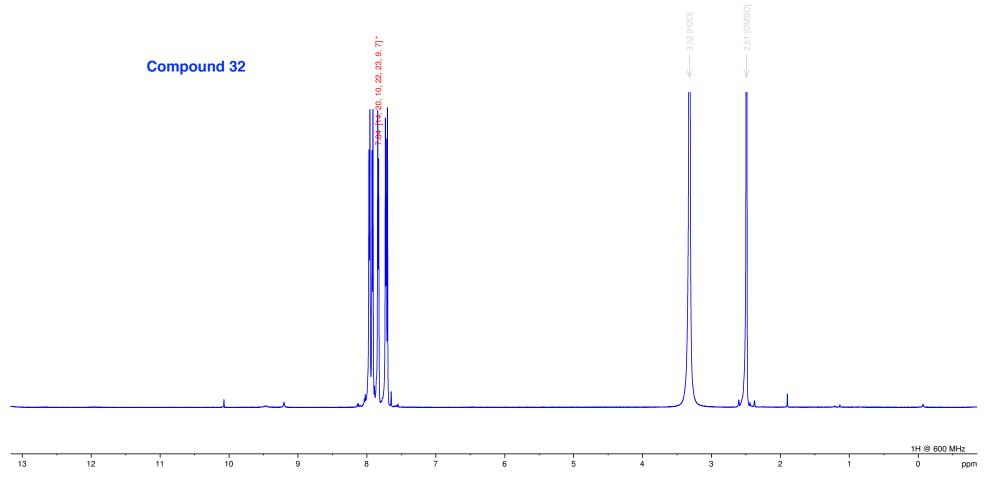

TZB-006

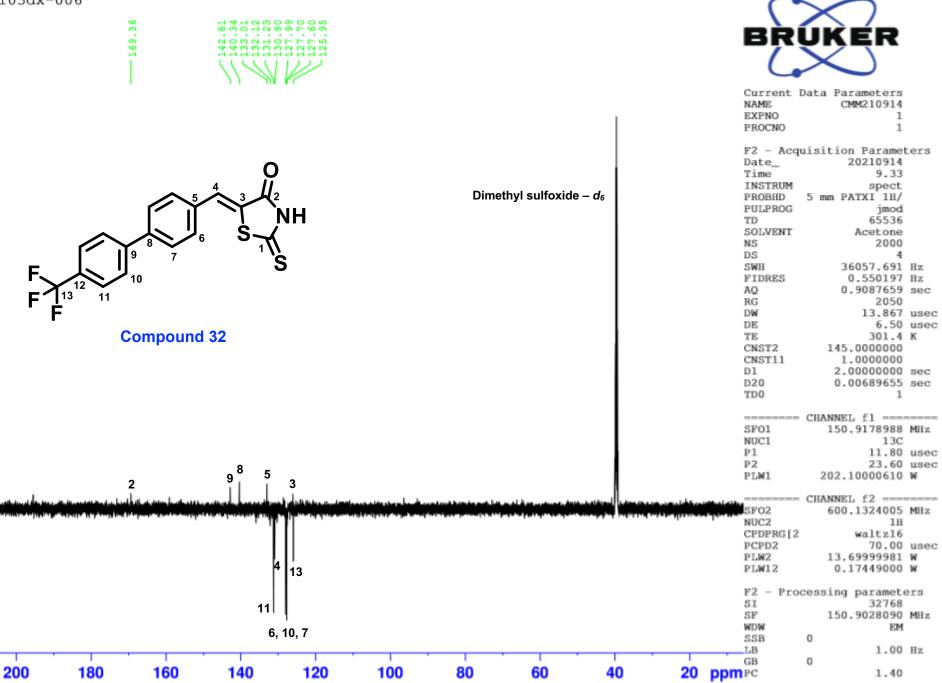
purity*

Data set 1H: Structure: Acquisition date: Solvent: Probe: Eretic reference: CMM210212 2 1 /opt/topspin4.1.3 /opt/topspin4.1.3/CMM210212/2/structure.mol February 12, 2021 9:13:01 AM EST DMSO 5 mm PATXI 1H/D/19F-13C/15N Z-GRD Z855801/0017

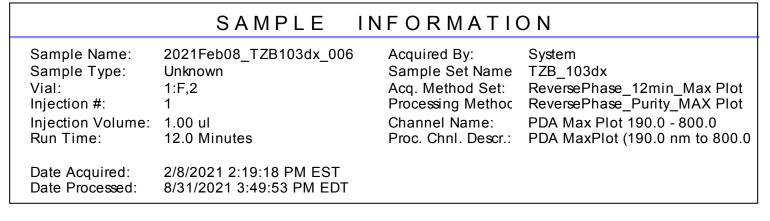
Comments:

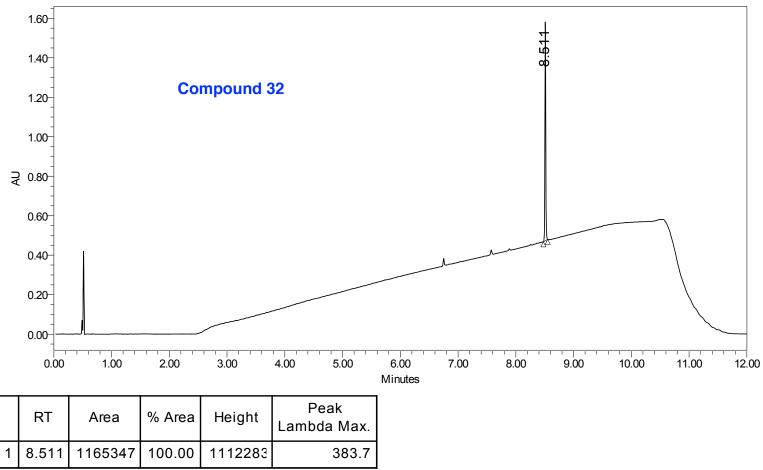
Multiplet interpretation available for spectrum. A multiplet interpretation for all major signals in the spectrum could be found. All given impurities could be assigned to regions in the spectrum.




Sum formula: C17H10F3NOS2

Molecular Mass: 365.02 Da


Automatic analysis generated by Bruker CMC (b:17). One or more results have not been created by automatic analysis, or edited manually: marked by "". Report generated by Bruker CMC-assist TopSpin 4.1.3 (of 2021-06-28 13:00:50), on 'MacBook-Pro.local' as 'tzbenton'



103dx-006

Signature:

CMM210212

Consistency: Unknown*, unknown

purity*

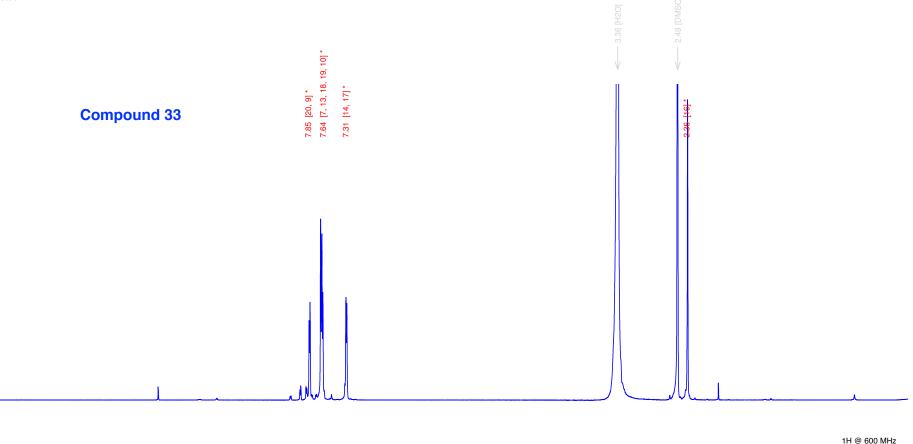
Data set 1H: Structure: Acquisition date: Solvent: Probe: Eretic reference:

CMM210212 3 1 /opt/topspin4.1.3 /opt/topspin4.1.3/CMM210212/3/structure.mol February 12, 2021 9:18:02 AM EST DMSO 5 mm PATXI 1H/D/19F-13C/15N Z-GRD Z855801/0017

Comments:

Multiplet interpretation available for spectrum.Multiplet interpretation available for spectrum.

A multiplet interpretation for all major signals in the spectrum could be found. All given impurities could be assigned to regions in the spectrum.A multiplet interpretation for all major signals in the spectrum could be found. All given impurities could be assigned to regions in the spectrum.



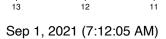
Sum formula: C17H13NOS2

Molecular Mass: 311.04 Da

Automatic analysis generated by Bruker CMC (b:17). One or more results have not been created by automatic analysis, or edited manually: marked by '*'. Report generated by Bruker CMC-assist TopSpin 4.1.3 (of 2021-06-28 13:00:50), on 'MacBook-Pro.local' as 'tzbenton'

21

6


7

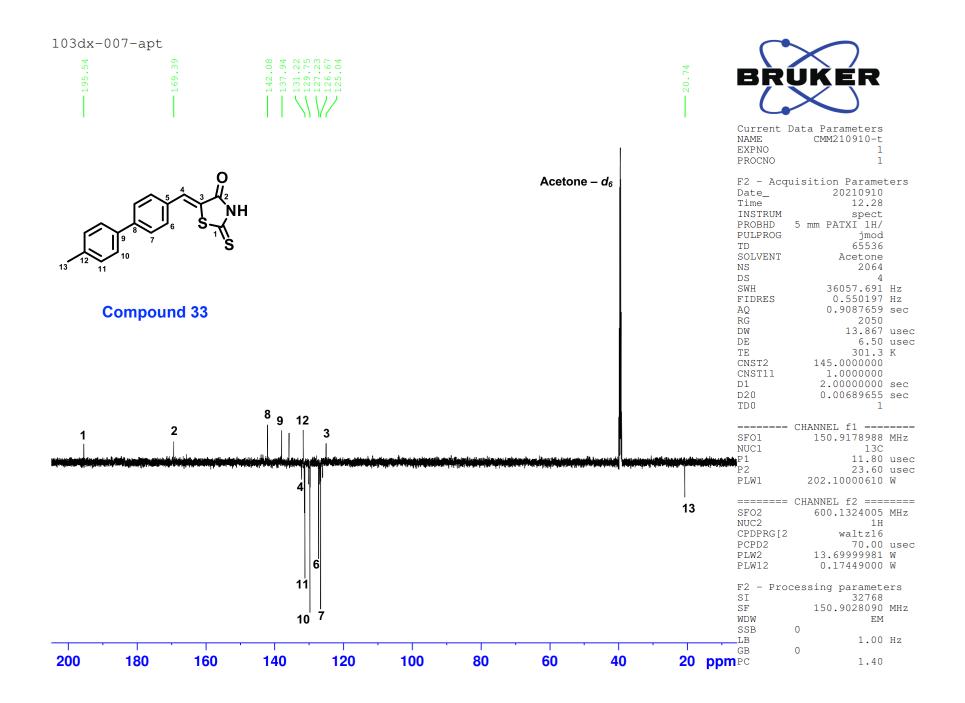
5

3

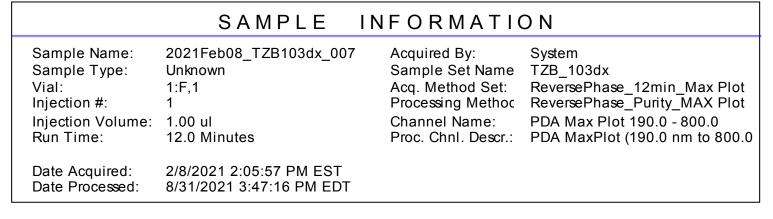
4

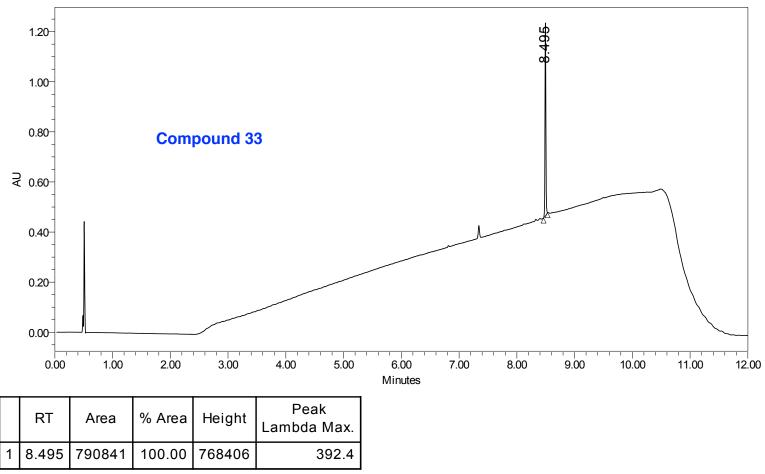
2

11


10

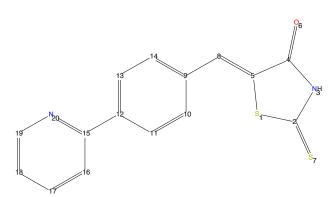
9


8


13

ppm

Signature:


Consistency: Unknown*, unknown

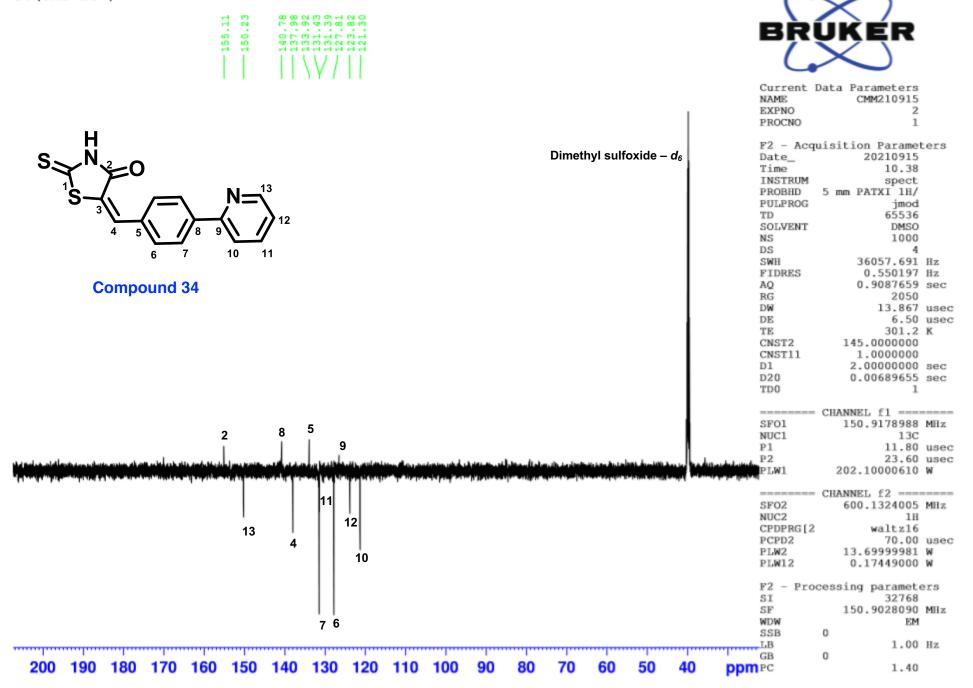
purity*

Data set 1H: Structure: Acquisition date: Solvent: Probe: Eretic reference: CMM210622 6 1 /opt/topspin4.1.3 /opt/topspin4.1.3/CMM210622/6/structure.mol June 22, 2021 11:30:54 AM EDT DMSO 5 mm PATXI 1H/D/19F-13C/15N Z-GRD Z855801/0017

Comments:

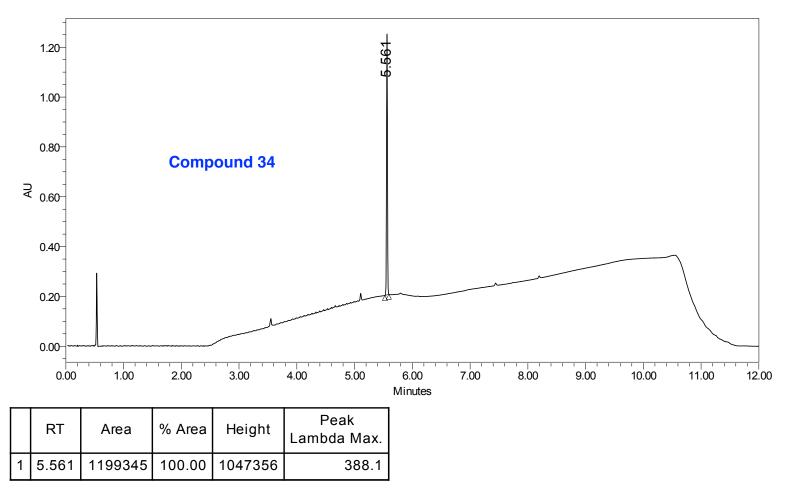
Multiplet interpretation available for spectrum. A multiplet interpretation for all major signals in the spectrum could be found. All given impurities could be assigned to regions in the spectrum.





Sum formula: C15H10N2OS2

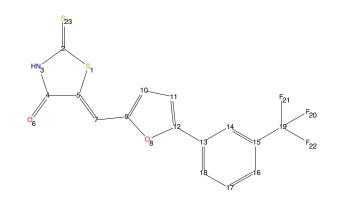
Molecular Mass: 298.02 Da


Automatic analysis generated by Bruker CMC (b:17). One or more results have not been created by automatic analysis, or edited manually: marked by ^{twi}. Report generated by Bruker CMC-assist TopSpin 4.1.3 (of 2021-06-28 13:00:50), on 'MacBook-Pro.local' as 'tzbenton'

	SAMPLE I	NFORMATIO	N
Sample Name:	167	Acquired By:	System
Sample Type:	Unknown	Sample Set Name	103dx_JMT
Vial:	1:B,2	Acq. Method Set:	ReversePhase_12min_Max Plot
Injection #:	1	Processing Methoc	ReversePhase_Purity_MAX Plot
Injection Volume:	1.00 ul	Channel Name:	PDA Max Plot 190.0 - 800.0
Run Time:	12.0 Minutes		PDA MaxPlot (190.0 nm to 800.0
Date Acquired: Date Processed:	7/27/2021 8:34:05 PM EDT 8/31/2021 3:42:43 PM EDT		

Signature:

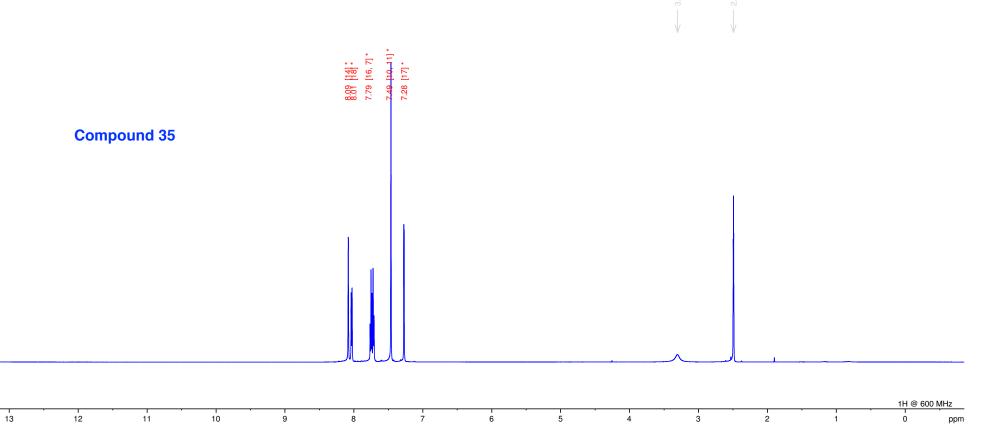
CMM210622


Consistency: Unknown*, unknown

purity*

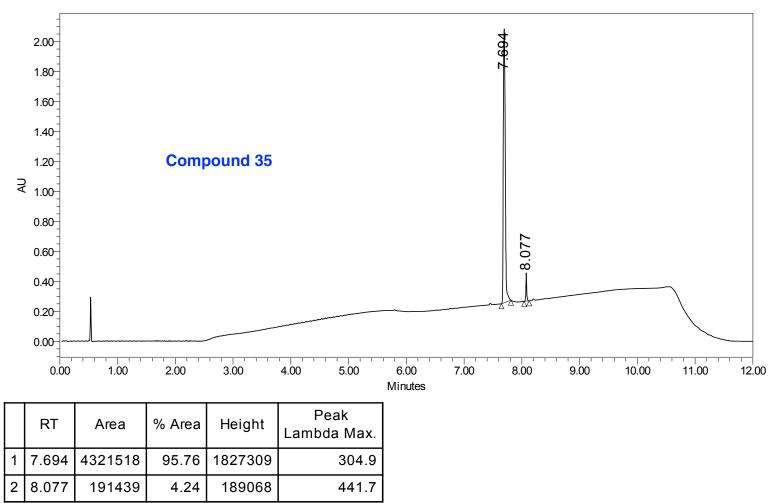
Data set 1H: Structure: Acquisition date: Solvent: Probe: Eretic reference: CMM210622 7 1 /opt/topspin4.1.3 /opt/topspin4.1.3/CMM210622/7/structure.mol June 22, 2021 11:36:16 AM EDT DMSO 5 mm PATXI 1H/D/19F-13C/15N Z-GRD Z855801/0017

Comments:


Multiplet interpretation available for spectrum. A multiplet interpretation for all major signals in the spectrum could be found. All given impurities could be assigned to regions in the spectrum.

Sum formula: C15H8F3NO2S2

Molecular Mass: 354.99 Da


Automatic analysis generated by Bruker CMC (b:17). One or more results have not been created by automatic analysis, or edited manually: marked by "". Report generated by Bruker CMC-assist TopSpin 4.1.3 (of 2021-06-28 13:00:50), on 'MacBook-Pro.local' as 'tzbenton'

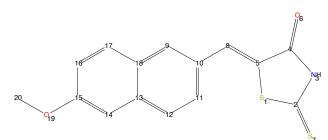
35 (JMT-169) 199:93 199:94 199:94 199:95 199:94 199:95		BRUKER
0		Current Data Parameters NAME CMM210914 EXPNO 2 PROCNO 1
$F = \int_{13}^{10} \int_{14}^{10} \int_{13}^{10} \int_{14}^{10} F$ Compound 35	Dimethyl sulfoxide – d ₆	F2 - Acquisition Parameters Date_ 20210914 Time 10.30 INSTRUM spect PROBHD 5 mm PATXI 1H/ PULPROG jmod TD 65536 SOLVENT DMSO NS 1000 DS 4 SWH 36057.691 FIDRES 0.550197 AQ 0.9087659 RG 2050 DW 13.867 DE 6.50 DE 6.50 DE 6.50 DE 301.3 CNST2 145.0000000 D1 2.0000000 SEC 301.3 CNST11 1.0000000 D1 2.0000000 SEC SEC D20 0.00689655 TD0 1
	شامير ، بالفاحية فالحمد فالحمد القارب التعمل المحمد واستلا المحمد الم	CHANNEL f1 SF01 150.9178988 MHz NUC1 13C P1 11.80 usec P2 23.60 usec FLW1 202.10000610 W
	an de eler i en de la recent en en de registre i e de registre en de registre en de registre en de registre en	CHANNEL f2 SFO2 600.1324005 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 70.00 usec PLW2 13.69999981 W PLW12 0.17449000 W F2 - Processing parameters SI 32768 SF 150.9028090 MHz WDW EM SSB 0 LB 1.00 Hz
200 180 160 140 120 100	80 60 40 20	GB 0 ppmPC 1.40

	SAMPLE I	NFORMATIO	O N
Sample Name: Sample Type: Vial: Injection #: Injection Volume:		Acquired By: Sample Set Name Acq. Method Set: Processing Methoc Channel Name:	PDA Max Plot 190.0 - 800.0
Run Time: Date Acquired: Date Processed:	12.0 Minutes 7/27/2021 10:26:00 PM EDT 8/31/2021 3:45:39 PM EDT	Proc. Chnl. Descr.:	PDA MaxPlot (190.0 nm to 800.0

CMM210622

JMT-173

Consistency: Unknown*, unknown


purity*

Data set 1H: Structure: Acquisition date: Solvent: Probe: Eretic reference: CMM210622 4 1 /opt/topspin4.1.3 /opt/topspin4.1.3/CMM210622/4/structure.mol June 22, 2021 11:20:30 AM EDT DMSO 5 mm PATXI 1H/D/19F-13C/15N Z-GRD Z855801/0017

13

Multiplet interpretation available for spectrum. A multiplet interpretation for all major signals in the spectrum could be found. All given impurities could be assigned to regions in the spectrum.

5

4

3

Sum formula: C15H11NO2S2

Molecular Mass: 301.02 Da

Automatic analysis generated by Bruker CMC (b:17). One or more results have not been created by automatic analysis, or edited manually: marked by "". Report generated by Bruker CMC-assist TopSpin 4.1.3 (of 2021-06-28 13:00:50), on 'MacBook-Pro.local' as 'tzbenton'

2

Signature:

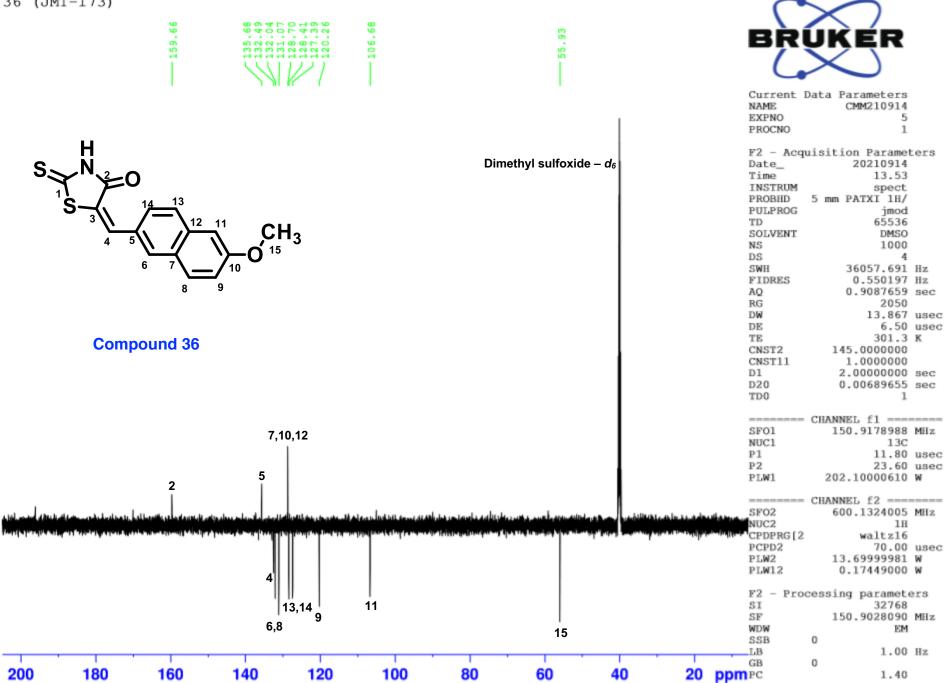
11

10

9

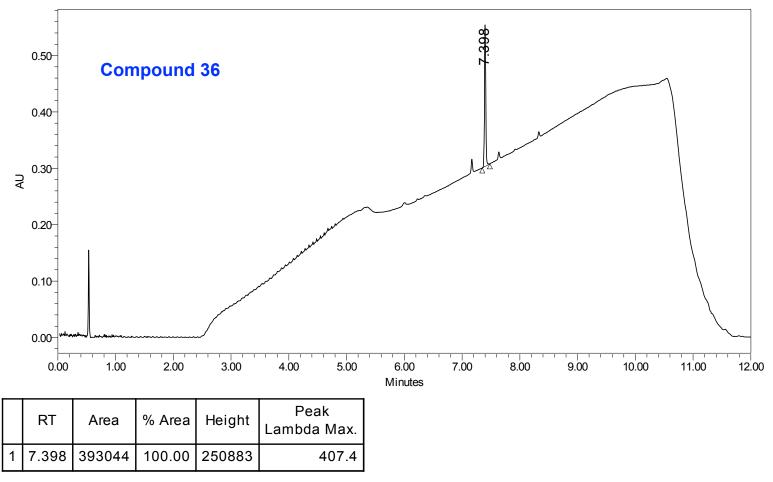
8

7


6

12

ppm


1H @ 600 MHz

36 (JMT-173)

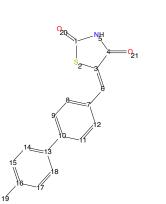
	SAMPLE I	NFORMATIO	N C
Sample Name:	173	Acquired By:	ReversePhase_12min_Max Plot
Sample Type:	Unknown	Sample Set Name	
Vial:	1:D,1	Acq. Method Set:	
Injection #:	1	Processing Methoc	
Injection Volume:	2.00 ul	Channel Name:	PDA Max Plot 190.0 - 800.0
Run Time:	12.0 Minutes	Proc. Chnl. Descr.:	
Date Acquired: Date Processed:	8/31/2021 4:51:35 PM EDT 9/1/2021 10:43:08 AM EDT		

Signature:

TZB-009_2

Consistency: Unknown*, unknown

purity*

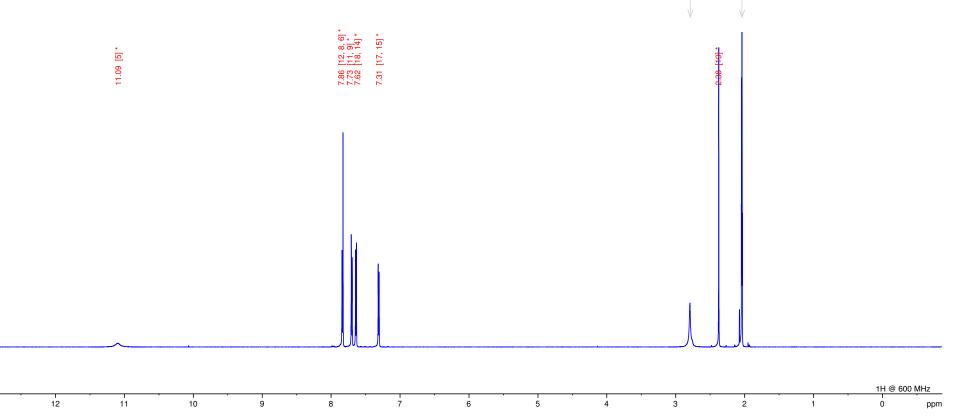

Data set 1H:
Structure:
Acquisition date:
Solvent:
Probe:
Eretic reference:

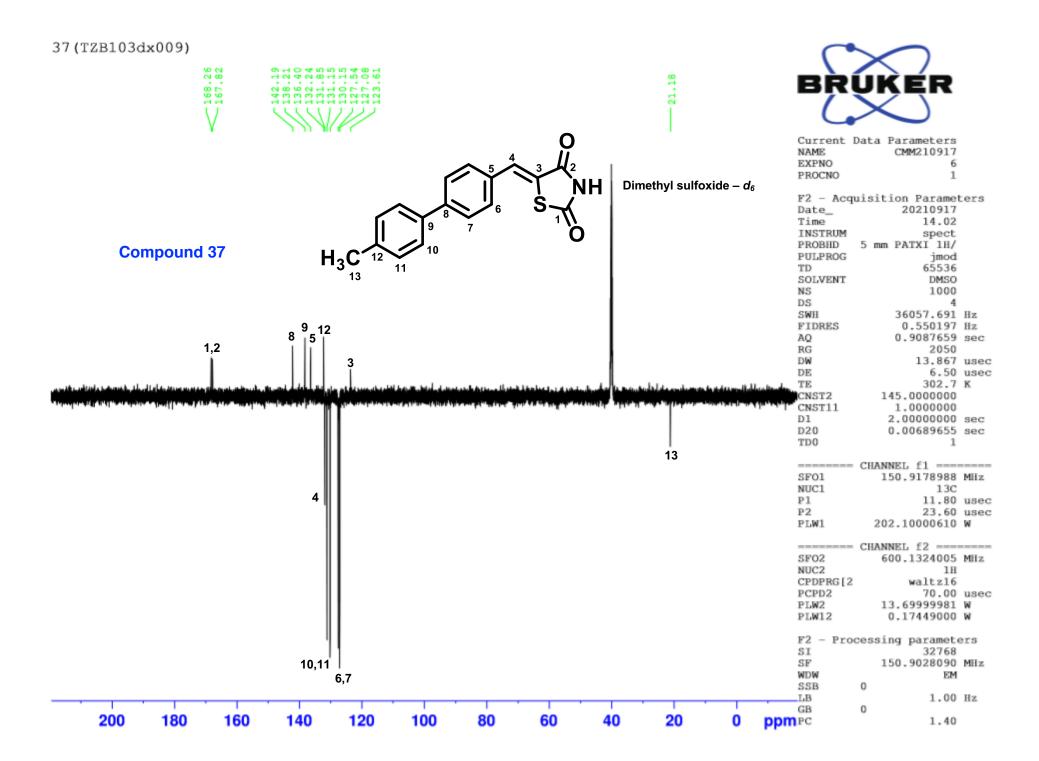
Comments:

Multiplet interpretation available for spectrum.

impurities could be assigned to regions in the spectrum.

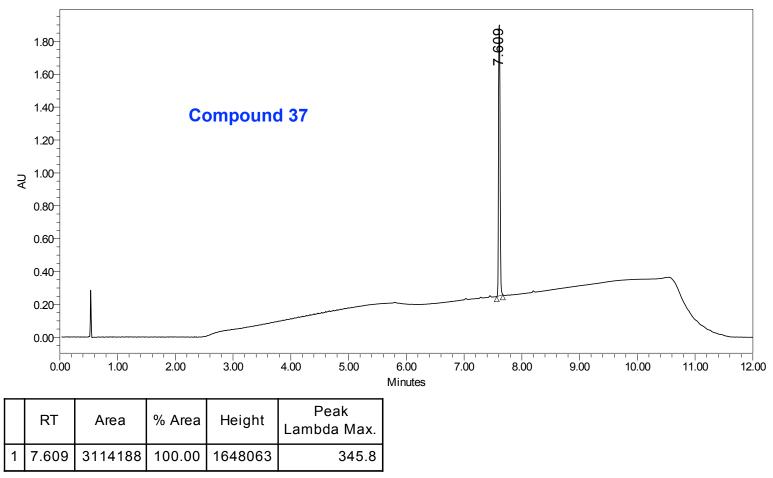
TZB-009_2 1 1 /opt/topspin4.1.3 /opt/topspin4.1.3/TZB-009_2/1/structure.mol July 21, 2021 9:01:46 AM EDT Acetone 5 mm PATXI 1H/D/19F-13C/15N Z-GRD Z855801/0017


Sum formula: C17H13NO2S


Molecular Mass: 295.07 Da

Automatic analysis generated by Bruker CMC (b:17). One or more results have not been created by automatic analysis, or edited manually: marked by ^{i*1}. Report generated by Bruker CMC-assist TopSpin 4.1.3 (of 2021-06-28 13:00:50), on 'MacBock-Pro.local' as 'tzbenton'

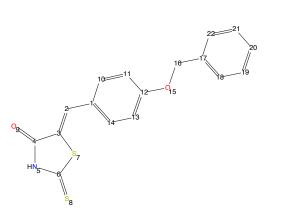
Compound 37


A multiplet interpretation for all major signals in the spectrum could be found. All given

	SAMPLE I	INFORMATIO	N C
Sample Name: Sample Type: Vial: Injection #: Injection Volume: Run Time:	009 Unknown 1:B,6 1 1.00 ul 12.0 Minutes	Acquired By: Sample Set Name Acq. Method Set: Processing Methoc Channel Name: Proc. Chnl. Descr.:	System 103dx_JMT ReversePhase_12min_Max Plot ReversePhase_Purity_MAX Plot PDA Max Plot 190.0 - 800.0 PDA MaxPlot (190.0 nm to 800.0
Date Acquired: Date Processed:	7/27/2021 9:23:17 PM EDT 8/31/2021 3:25:18 PM EDT		

JMT_129

Consistency: Unknown*, unknown


purity*

Data set 1H:
Structure:
Acquisition date:
Solvent:
Probe:
Eretic reference:

JMT_129 1 1 /opt/topspin4.1.3 /opt/topspin4.1.3/JMT_129/structure.mol July 18, 2021 5:12:28 PM EDT Acetone 5 mm PATXI 1H/D/19F-13C/15N Z-GRD Z855801/0017

Comments:

Multiplet interpretation available for spectrum. A multiplet interpretation for all major signals in the spectrum could be found. All given impurities could be assigned to regions in the spectrum.

Sum formula: C17H13NO2S2

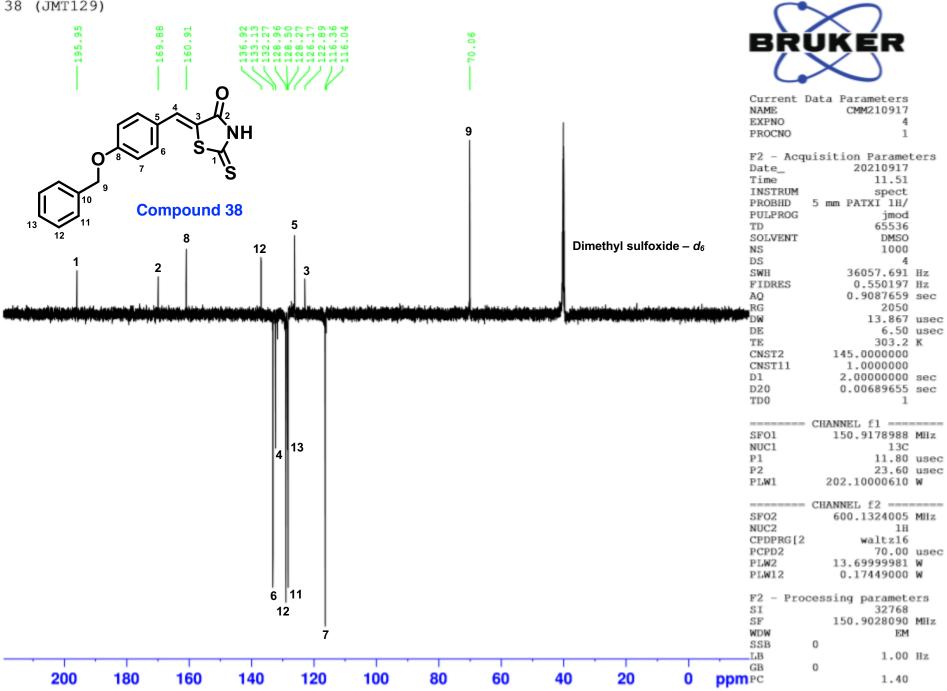
Molecular Mass: 327.04 Da

Automatic analysis generated by Bruker CMC (b:17). One or more results have not been created by automatic analysis, or edited manually: marked by "". Report generated by Bruker CMC-assist TopSpin 4.1.3 (of 2021-06-28 13:00:50),

on 'MacBook-Pro.local' as 'tzbenton'

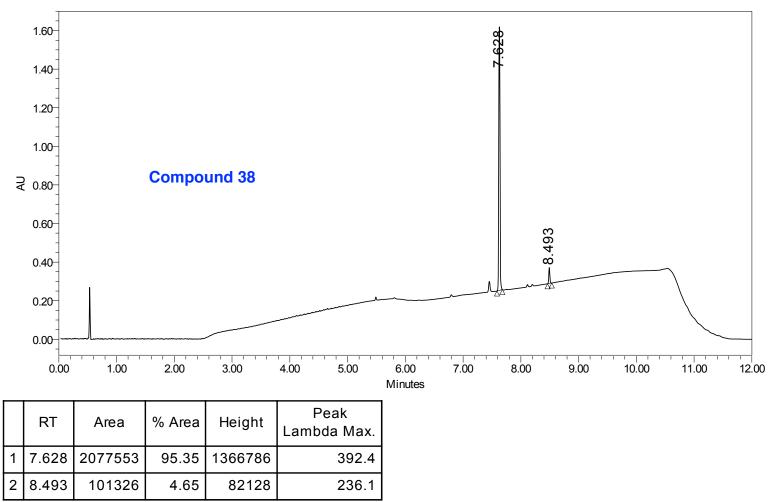
Compound 38

12.18 [5] *			


						•						
13	12		 10	9	8	7	6	5	4	3	2	· · · · · · · · · · · · · · · · · · ·
Jul 20,	2021 (12:29	9:03 PM)										

Signature:

7.62 [2, 14, 10] 7.51 [18, 22] * 7.34 [20] 19] * 7.19 [11, 13] *


ppm

1H @ 600 MHz 0 pr

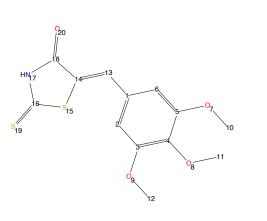
	SAMPLE I	NFORMATIO	N
Sample Name: Sample Type: Vial: Injection #:	129 Unknown 1:A,6 1	Acquired By: Sample Set Name Acq. Method Set: Processing Methoc	System 103dx_JMT ReversePhase_12min_Max Plot ReversePhase_Purity_MAX Plot
Injection Volume:	1.00 ul 12.0 Minutes	Channel Name:	PDA Max Plot 190.0 - 800.0 PDA MaxPlot (190.0 nm to 800.0
Date Acquired: Date Processed:	7/27/2021 7:43:54 PM EDT 8/31/2021 3:03:27 PM EDT		

JMT_134

Consistency: Unknown*, unknown

purity*

Data set 1H:
Structure:
Acquisition date:
Solvent:
Probe:
Eretic reference:


JMT_134 1 1 /opt/topspin4.1.3 /opt/topspin4.1.3/JMT_134/1/structure.mol July 18, 2021 4:56:18 PM EDT Acetone 5 mm PATXI 1H/D/19F-13C/15N Z-GRD Z855801/0017

Comments:

Multiplet interpretation available for spectrum.Multiplet interpretation available for spectrum.

A multiplet interpretation for all major signals in the spectrum could be found. All given impurities could be assigned to regions in the spectrum.A multiplet interpretation for all major signals in the spectrum could be found. All given impurities could be assigned to regions in the spectrum.

4.00 [12, 10] *

3.79 [11] *

Sum formula: C13H13NO4S2

Molecular Mass: 311.03 Da

Automatic analysis generated by Bruker CMC (b:17). One or more results have not been created by automatic analysis, or edited manually: marked by '*'. Report generated by Bruker CMC-assist TopSpin 4.1.3 (of 2021-06-28 13:00:50), on 'MacBook-Pro.local' as 'tzbenton'

Compound 39 7.56 [13] * [2, 6] * 6.90

Signature:

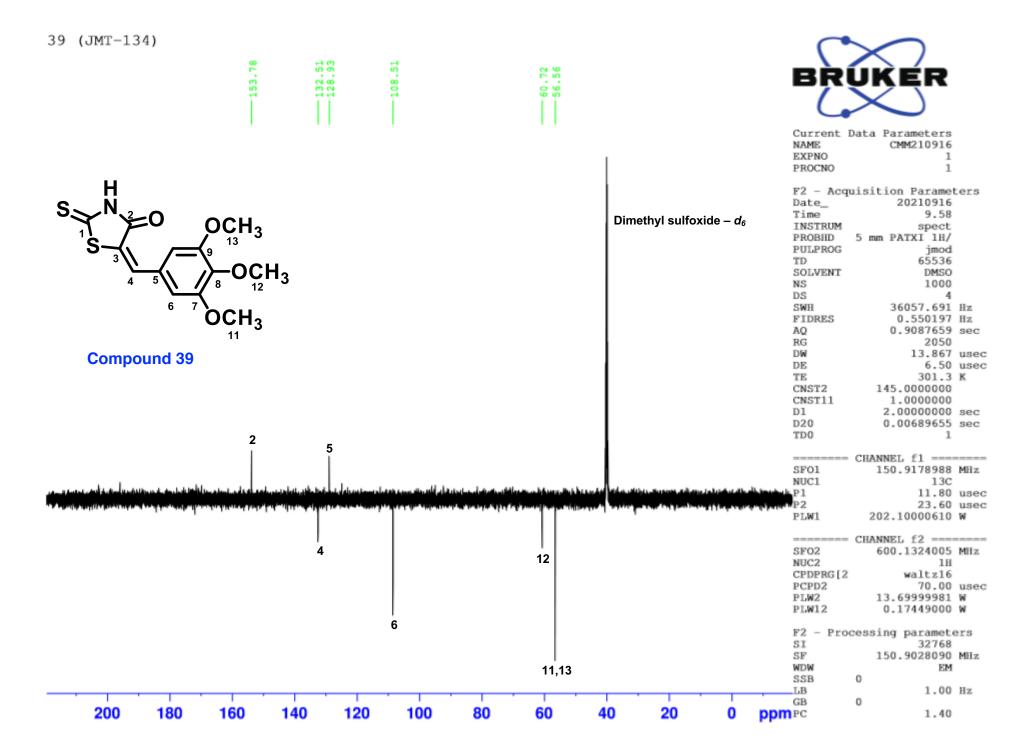
1H @ 600 MHz 0 ppm

11

10

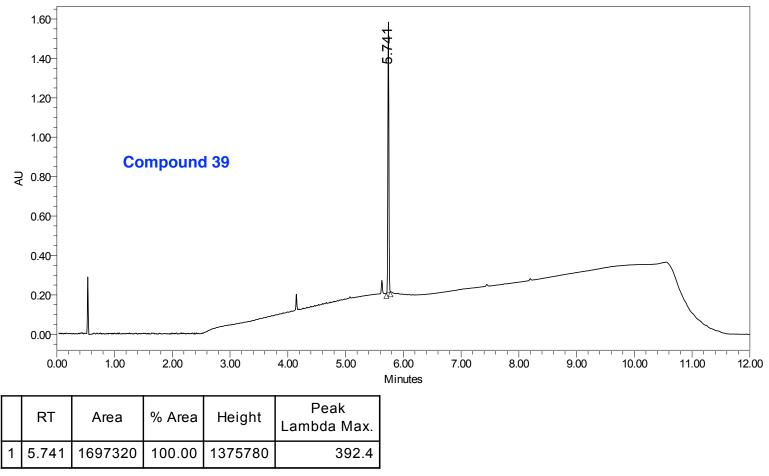
9

8


6

7

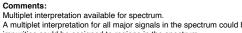
5


4

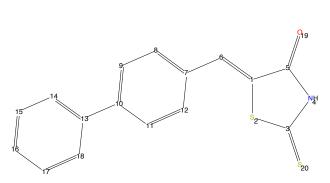
3

	SAMPLE I	NFORMATIC	O N
Sample Name:	134	Acquired By:	ReversePhase_12min_Max Plot
Sample Type:	Unknown	Sample Set Name	
Vial:	1:B,1	Acq. Method Set:	
Injection #:	1	Processing Methoc	
Injection Volume:	1.00 ul	Channel Name:	PDA Max Plot 190.0 - 800.0
Run Time:	12.0 Minutes		PDA MaxPlot (190.0 nm to 800.0
Date Acquired: Date Processed:	7/27/2021 8:21:34 PM EDT 8/31/2021 3:06:18 PM EDT		

Signature:


JMT_144

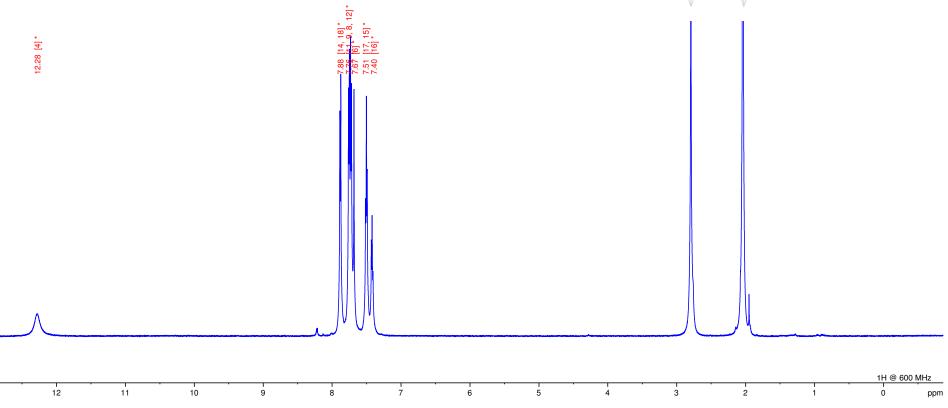
Consistency: Unknown*, unknown

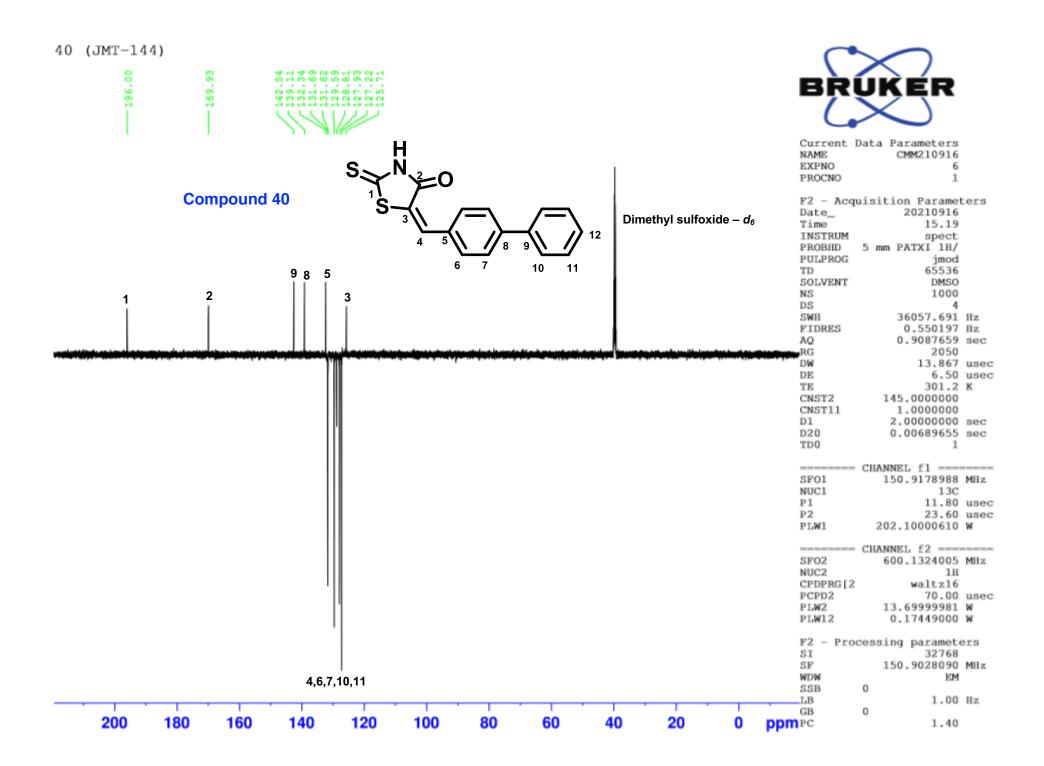

purity*

Data set 1H:
Structure:
Acquisition date:
Solvent:
Probe:
Eretic reference:

JMT_144 1 1 /opt/topspin4.1.3 /opt/topspin4.1.3/JMT_144/1/structure.mol July 19, 2021 2:35:45 PM EDT Acetone 5 mm PATXI 1H/D/19F-13C/15N Z-GRD Z855801/0017

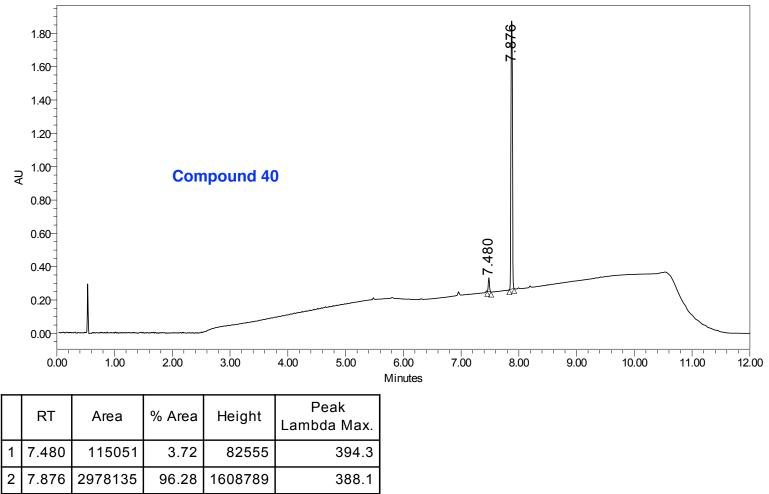
Multiplet interpretation available for spectrum. A multiplet interpretation for all major signals in the spectrum could be found. All given impurities could be assigned to regions in the spectrum.




Sum formula: C16H11NOS2

Molecular Mass: 297.03 Da

Automatic analysis generated by Bruker CMC (b:17). One or more results have not been created by automatic analysis, or edited manually: marked by '*'. Report generated by Bruker CMC-assist TopSpin 4.1.3 (of 2021-06-28 13:00:50), on 'MacBook-Pro.local' as 'tzbenton'



	SAMPLE I	NFORMATIO	O N
Sample Name:	144	Acquired By:	ReversePhase_12min_Max Plot
Sample Type:	Unknown	Sample Set Name	
Vial:	1:A,5	Acq. Method Set:	
Injection #:	1	Processing Methoc	
Injection Volume:	1.00 ul	Channel Name:	PDA Max Plot 190.0 - 800.0
Run Time:	12.0 Minutes	Proc. Chnl. Descr.:	
Date Acquired: Date Processed:	7/27/2021 7:31:19 PM EDT 8/31/2021 3:36:51 PM EDT		

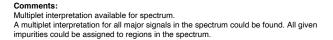
Signature:

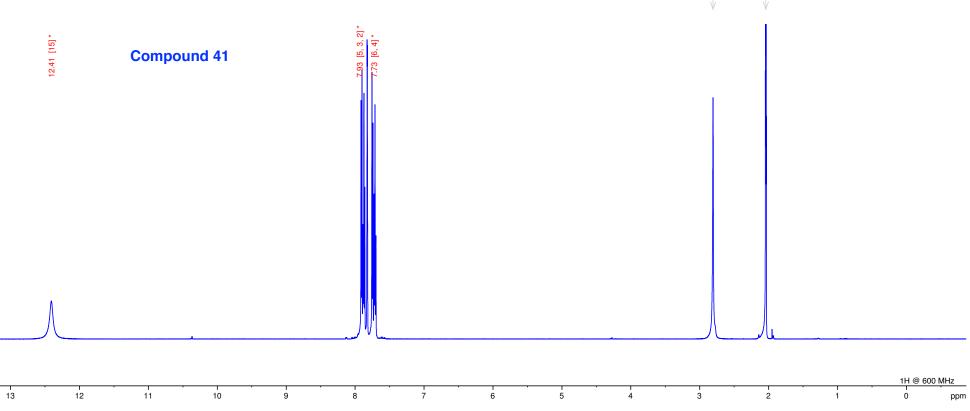
JMT_187

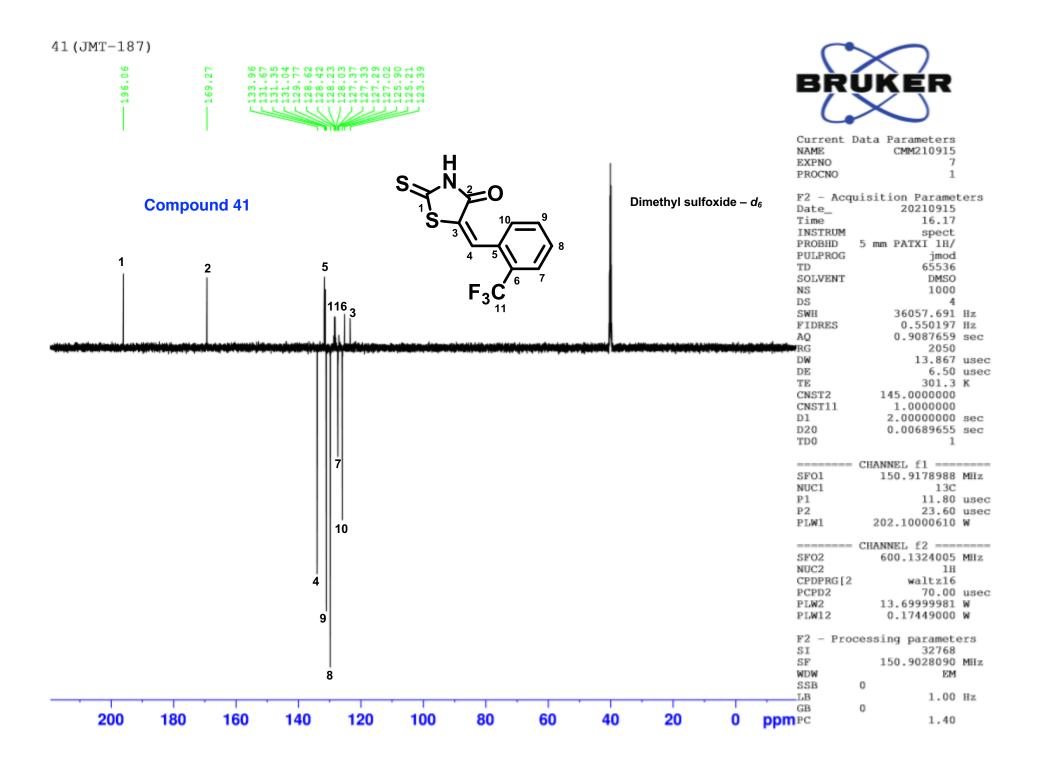
Consistency: Unknown*, unknown

purity*

Data set 1H:
Structure:
Acquisition date:
Solvent:
Probe:
Eretic reference:

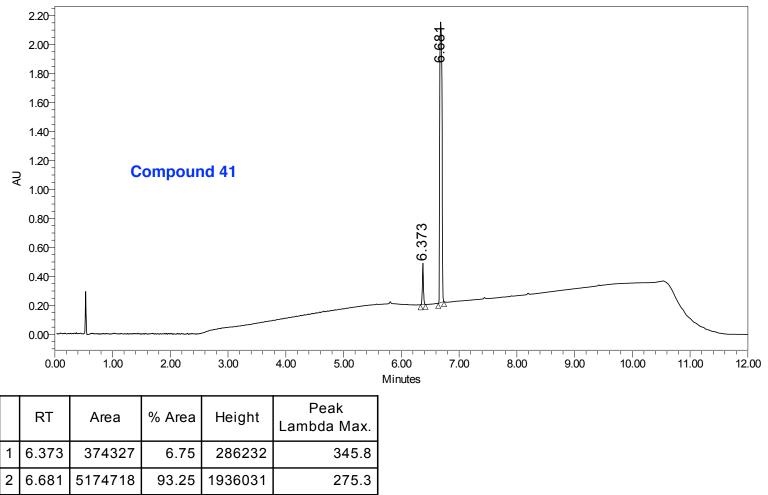

JMT_187 1 1 / opt/topspin4.1.3 /opt/topspin4.1.3/JMT_187/1/structure.mol July 18, 2021 4:33:05 PM EDT Acetone 5 mm PATXI 1H/D/19F-13C/15N Z-GRD Z855801/0017 P_{18} P_{18} P_{10} P_{11} P_{11} P_{11} P_{11} P_{11} P_{11} P_{10} P_{10} P_{1


BRUKER


Sum formula: C11H6F3NOS2

Molecular Mass: 288.98 Da

Automatic analysis generated by Bruker CMC (b:17). One or more results have not been created by automatic analysis, or edited manually: marked by ^{ttri}. Report generated by Bruker CMC-assist TopSpin 4.1.3 (of 2021-06-28 13:00:50), on 'MacBook-Pro.local' as tzbenton'

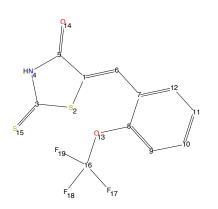


	SAMPLE I	NFORMATIO	O N
Sample Name:	187	Acquired By:	ReversePhase_12min_Max Plot
Sample Type:	Unknown	Sample Set Name	
Vial:	1:A,4	Acq. Method Set:	
Injection #:	1	Processing Methoc	
Injection Volume:	1.00 ul	Channel Name:	PDA Max Plot 190.0 - 800.0
Run Time:	12.0 Minutes		PDA MaxPlot (190.0 nm to 800.0
Date Acquired: Date Processed:	7/27/2021 7:18:44 PM EDT 8/31/2021 3:57:16 PM EDT		

JMT_188

Consistency: Unknown*, unknown

purity*

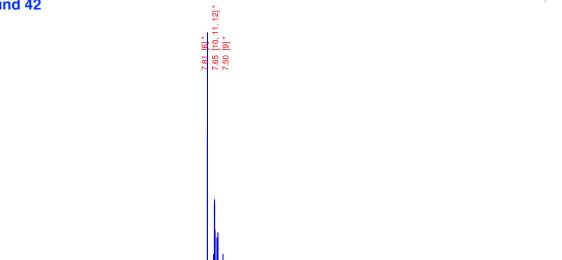

Data set 1H:
Structure:
Acquisition date:
Solvent:
Probe:
Eretic reference:

JMT_188 1 1 /opt/topspin4.1.3 /opt/topspin4.1.3/JMT_188/1/structure.mol July 18, 2021 5:06:13 PM EDT Acetone 5 mm PATXI 1H/D/19F-13C/15N Z-GRD Z855801/0017

Comments:

12.30 [14] *

Multiplet interpretation available for spectrum. A multiplet interpretation for all major signals in the spectrum could be found. All given impurities could be assigned to regions in the spectrum.


Sum formula: C11H6F3NO2S2

Molecular Mass: 304.98 Da

Automatic analysis generated by Bruker CMC (b:17). One or more results have not been created by automatic analysis, or edited manually: marked by '*'. Report generated by Bruker CMC-assist TopSpin 4.1.3 (of 2021-06-28 13:00:50), on 'MacBook-Pro.local' as 'tzbenton'

2

6

7

5

4

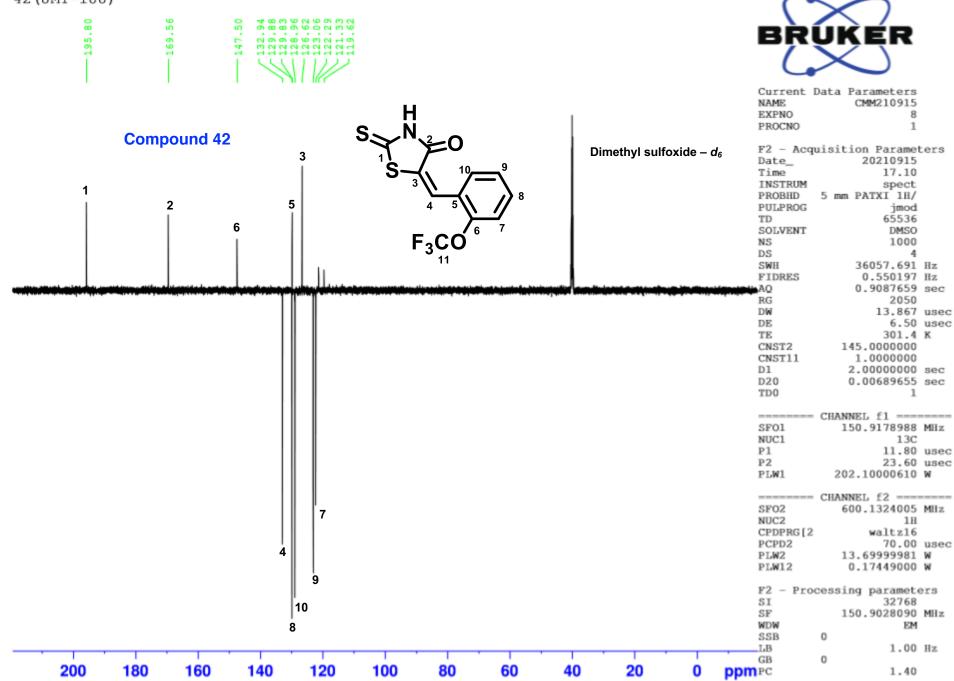
3

Signature:

1H @ 600 MHz ò ppm

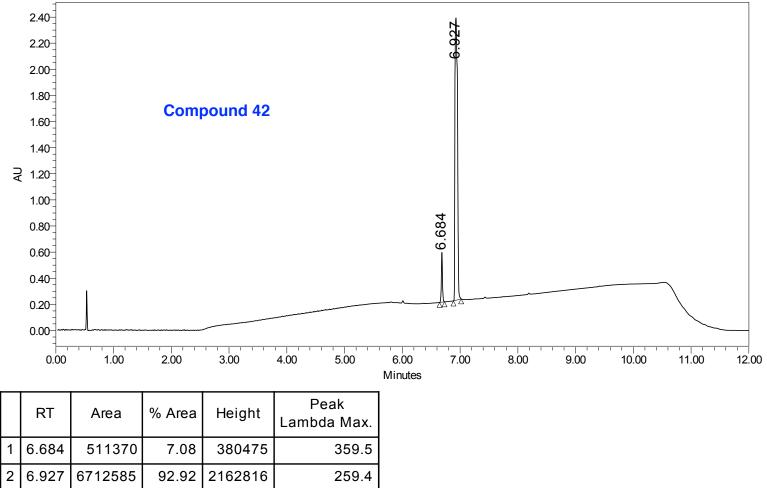
12 Sep 1, 2021 (7:32:00 AM)

11


10

9

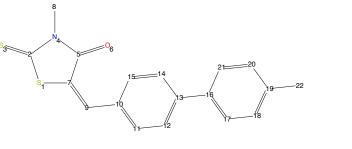
8


13

42 (JMT-188)

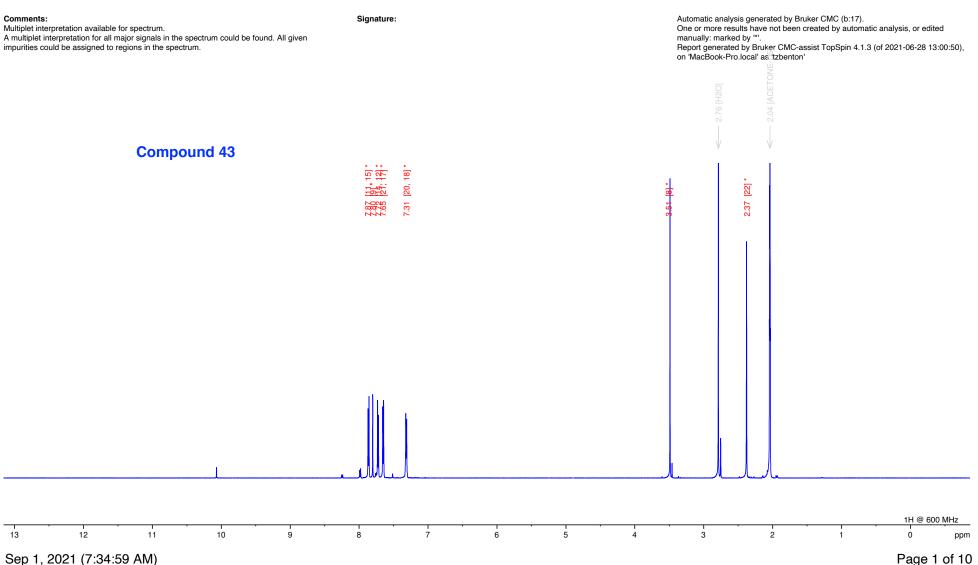
	SAMPLE I	NFORMATIO	O N
Sample Name:	188	Acquired By:	System
Sample Type:	Unknown	Sample Set Name	103dx_JMT
Vial:	1:A,2	Acq. Method Set:	ReversePhase_12min_Max Plot
Injection #:	1	Processing Methoc	ReversePhase_Purity_MAX Plot
Injection Volume:	1.00 ul	Channel Name:	PDA Max Plot 190.0 - 800.0
Run Time:	12.0 Minutes	Proc. Chnl. Descr.:	PDA MaxPlot (190.0 nm to 800.0
Date Acquired: Date Processed:	7/27/2021 6:53:33 PM EDT 8/31/2021 3:58:18 PM EDT		

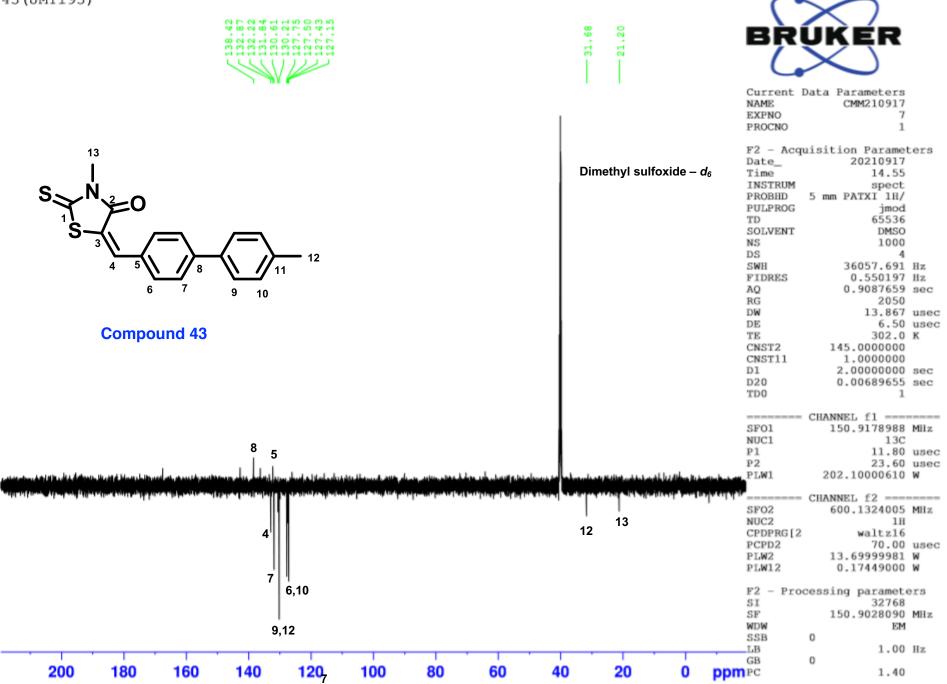
JMT193



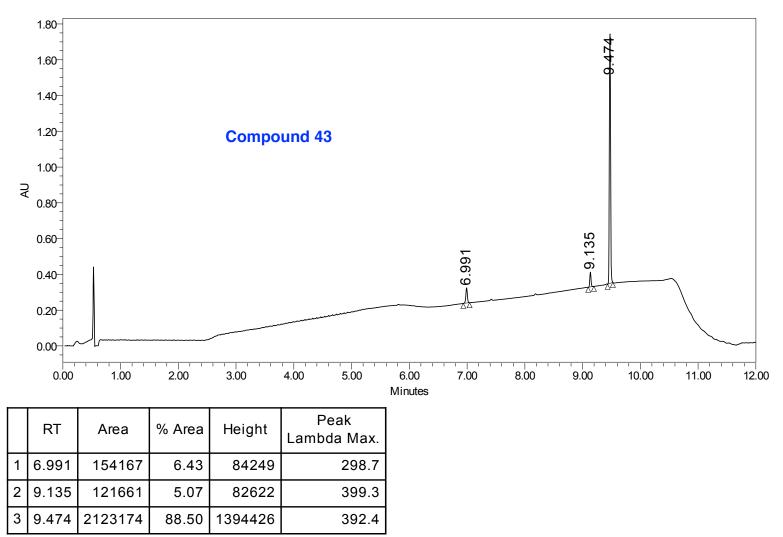
Consistency: Unknown*, unknown

purity*


Data set 1H:
Structure:
Acquisition date:
Solvent:
Probe:
Eretic reference:


JMT193 1 1 /opt/topspin4.1.3 /opt/topspin4.1.3/JMT193/1/structure.mol July 19, 2021 3:05:59 PM EDT Acetone 5 mm PATXI 1H/D/19F-13C/15N Z-GRD Z855801/0017

Sum formula: C18H15NOS2


Molecular Mass: 325.06 Da

	SAMPLE I	NFORMATIO	N C
Sample Name:	193	Acquired By:	System
Sample Type:	Unknown	Sample Set Name	103dx_JMT
Vial:	1:A,1	Acq. Method Set:	ReversePhase_12min_Max Plot
Injection #:	1	Processing Methoc	ReversePhase Purity MAX Plot
Injection Volume:	1.00 ul	Channel Name:	PDA Max Plot 190.0 - 800.0
Run Time:	12.0 Minutes		PDA MaxPlot (190.0 nm to 800.0
Date Acquired: Date Processed:	7/27/2021 6:40:58 PM EDT 8/31/2021 3:59:11 PM EDT		

Signature:

045

N N -

7.63 7.63

JMT194

Consistency: Unknown*, unknown

purity*

Data set 1H: Structure: Acquisition date: Solvent: Probe: Eretic reference:

JMT194 1 1 /opt/topspin4.1.3 /opt/topspin4.1.3/JMT194/1/structure.mol July 19, 2021 2:59:06 PM EDT Acetone 5 mm PATXI 1H/D/19F-13C/15N Z-GRD Z855801/0017

Comments:

13

12

Sep 1, 2021 (7:38:34 AM)

11

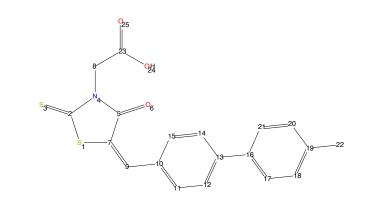
10

9

8

6

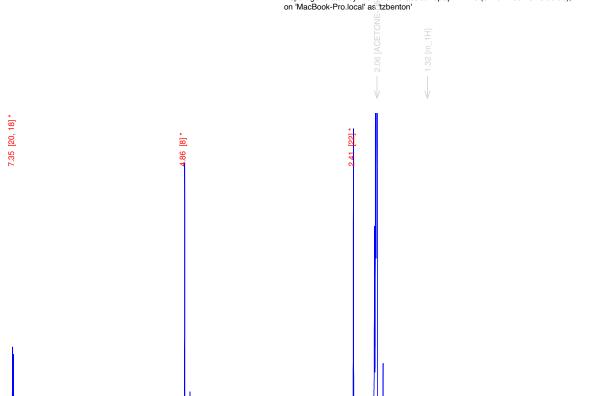
7


5

4

Multiplet interpretation available for spectrum.Multiplet interpretation available for spectrum.

A multiplet interpretation for all major signals in the spectrum could be found. All given impurities could be assigned to regions in the spectrum.A multiplet interpretation for all major signals in the spectrum could be found. All given impurities could be assigned to regions in the spectrum.

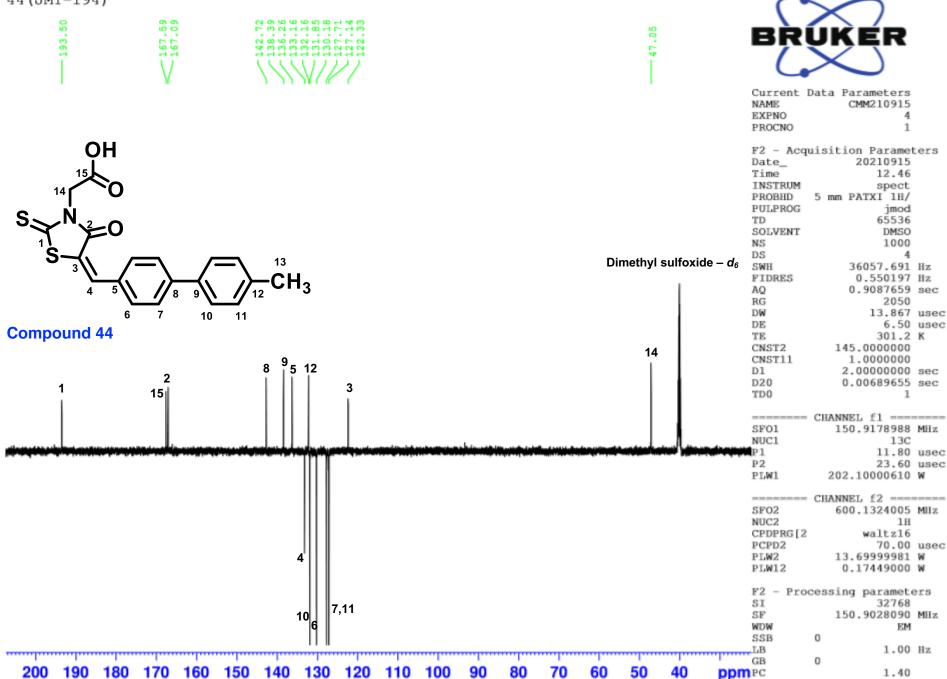

Compound 44

Sum formula: C19H15NO3S2

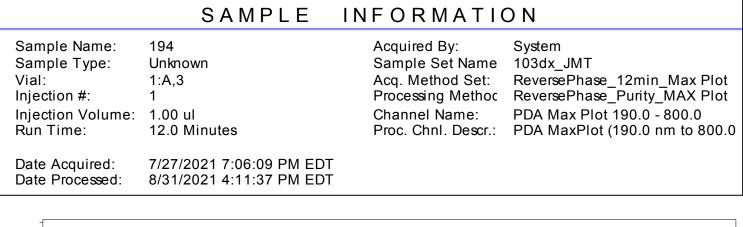
Molecular Mass: 369.05 Da

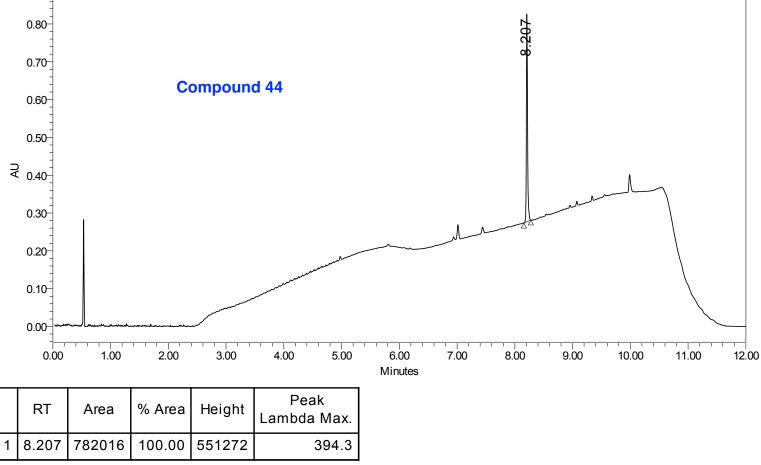
Automatic analysis generated by Bruker CMC (b:17). One or more results have not been created by automatic analysis, or edited manually: marked by '*'. Report generated by Bruker CMC-assist TopSpin 4.1.3 (of 2021-06-28 13:00:50),

3


2

ppm


1H @ 600 MHz


0

44 (JMT-)	194)
-----------	------

CMM210625

Consistency: Unknown*, unknown

purity*

Data set 1H: Structure: Acquisition date: Solvent: Probe: Eretic reference:

CMM210625 5 1 /opt/topspin4.1.3 /opt/topspin4.1.3/CMM210625/5/structure.mol June 25, 2021 2:52:22 PM EDT DMSO 5 mm PATXI 1H/D/19F-13C/15N Z-GRD Z855801/0017

Multiplet interpretation available for spectrum. A multiplet interpretation for all major signals in the spectrum could be found. All given impurities could be assigned to regions in the spectrum.

8,7 HN

[22]

Sum formula: C17H13NO2S2

Molecular Mass: 327.04 Da

Automatic analysis generated by Bruker CMC (b:17). One or more results have not been created by automatic analysis, or edited manually: marked by '*'. Report generated by Bruker CMC-assist TopSpin 4.1.3 (of 2021-06-28 13:00:50), on 'MacBook-Pro.local' as 'tzbenton'

Compound 45

[16, 20] * 7.82 7.66

Signature:

7.07

1H @ 600 MHz 2 3 0

12 Sep 1, 2021 (7:50:18 AM)

11

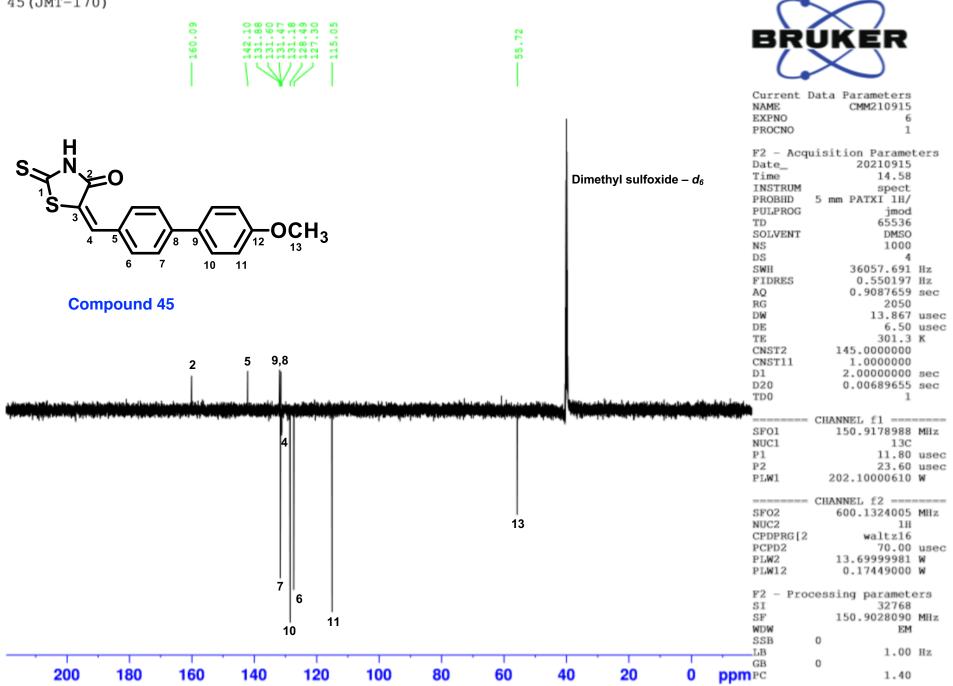
10

9

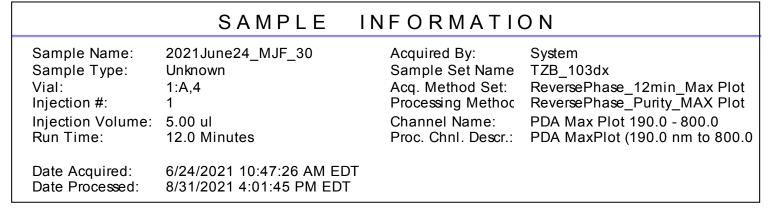
8

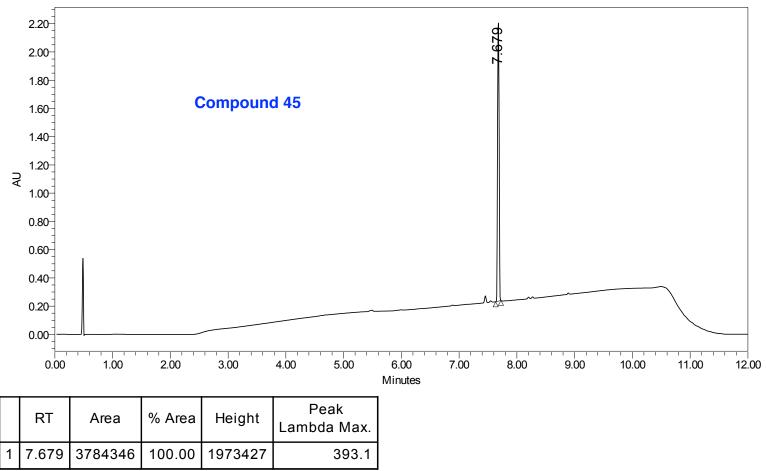
7

6


5

4

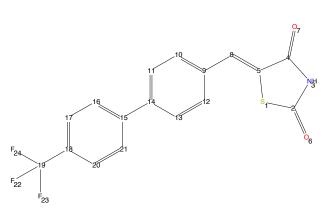

13


ppm

45 (JMT-170)

Signature:

CMM210618

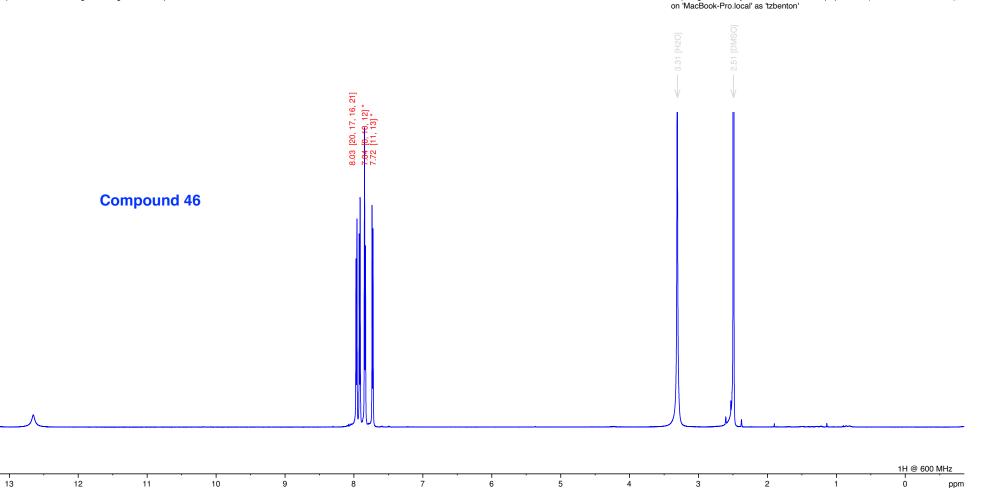

Consistency: Unknown*, unknown

purity*

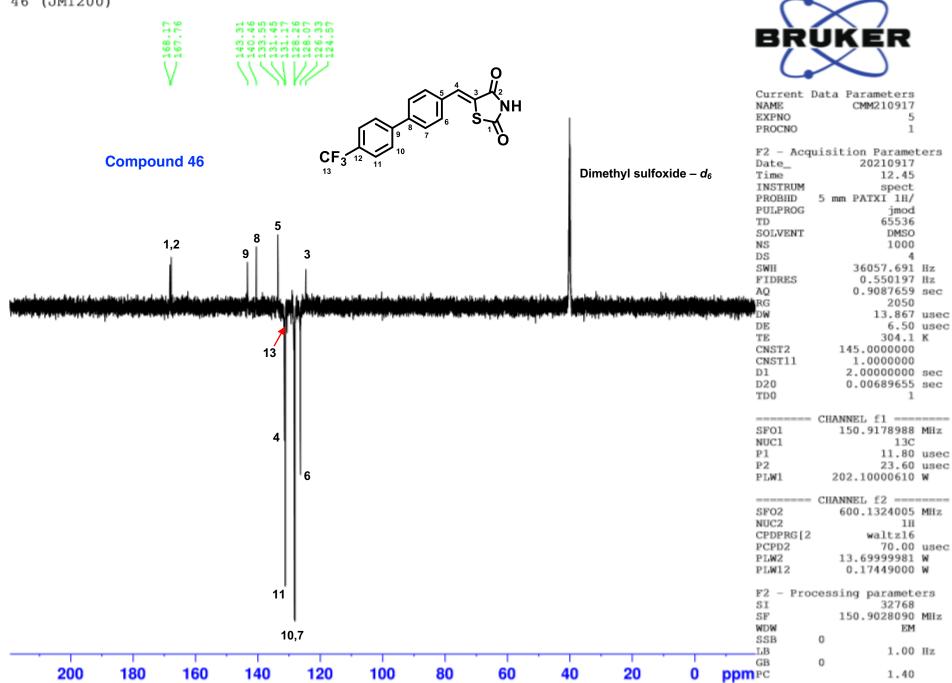
Data set 1H: Structure: Acquisition date: Solvent: Probe: Eretic reference: CMM210618 2 1 /opt/topspin4.1.3 /opt/topspin4.1.3/CMM210618/2/structure.mol June 18, 2021 3:08:52 PM EDT DMSO 5 mm PATXI 1H/D/19F-13C/15N Z-GRD Z855801/0017

Comments:

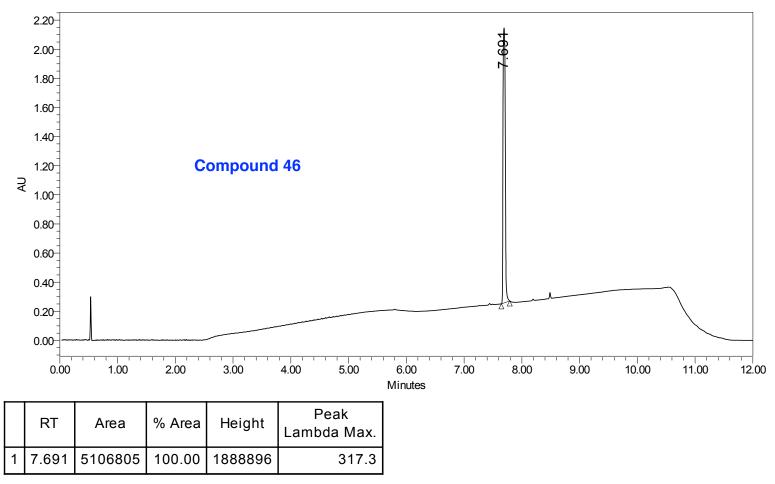
Multiplet interpretation available for spectrum. A multiplet interpretation for all major signals in the spectrum could be found. All given impurities could be assigned to regions in the spectrum.



Sum formula: C17H10F3NO2S


Molecular Mass: 349.04 Da

Automatic analysis generated by Bruker CMC (b:17). One or more results have not been created by automatic analysis, or edited manually: marked by "". Report generated by Bruker CMC-assist TopSpin 4.1.3 (of 2021-06-28 13:00:50),


Aug 31, 2021 (1:01:52 PM)

46 (JMT200)

	SAMPLE	INFORMATIO	N
Sample Name: Sample Type: Vial: Injection #: Injection Volume: Run Time:	Ds3 Unknown 1:A,7 1 1.00 ul 12.0 Minutes	Acquired By: Sample Set Name Acq. Method Set: Processing Methoc Channel Name: Proc. Chnl. Descr.:	System 103dx_JMT ReversePhase_12min_Max Plot ReversePhase_Purity_MAX Plot PDA Max Plot 190.0 - 800.0 PDA MaxPlot (190.0 nm to 800.0
Date Acquired: Date Processed:	7/27/2021 7:56:30 PM EDT 8/31/2021 2:47:35 PM EDT		

