Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Supporting information

Table S1. A representative summary of the enhanced photocatalytic activity of $g-C_3N_4$ photocatalysts based on sodium ion treatment for water splitting.

Precursors	Approach	Sacrificial and	Light source	Activity (unit)	ref
		agentcocatalysts			
Melamine and disodium	Generalthermal	Triethanolamine	300 W Xe lamp equipped with a UV-	H_2 ; 258.4 µmol h ⁻¹ g ⁻¹	1
ethylenediaminetetraacetate	condensation	and Pt	cutoff filter ($\lambda > 420 \text{ nm}$)		
Melamine and sodium	Generalthermal	Methanol and Pt	350 W Xe arc lamp	H_2 ; 3820 μ mol $h^{-1}g^{-1}$	2
tripolyphosphate	condensation				
Melamine and sodium	Step calcination	Triethanolamine	350 W Xe lamp with a UV cutoff filter	H_2 ; 935 μ mol h ⁻¹ g ⁻¹	3
hydroxide		and Pt	$(\lambda > 400 \text{ nm})$		
Melamine and sodium	Step calcination	Silver nitrate	300 W Xe lamp with a UV cutoff filter	O_2 ; 561.2 µmol $h^{-1}g^{-1}$	4
borohydride		Cobalt Hydroxide	$(\lambda > 300 \text{ nm})$		
Triazole ring and sodium	Condensation reaction	-	50 W halogen tungsten lamp irradiation	Degradation of methylene blue ; the	5
hydroxide				maximum monolayer adsorption	
				capacity 35mg/g	
Dicyandiamide and sodium	Hydrothermal	hydrogen	350 W Xe lamp with a UV cutoff filter	The photocatalytic oxidation (PCO) of	6
hydroxide	treatment	peroxide	$(\lambda > 420 \text{ nm})$	NO ; Promote three times	
Melamine and sodium	Ground in	Pt	300 W xenon lamp with a 420 nm	$H_2 and O_2 \ ; \ \ 31.5 \ \mu mol \ h^{1} g^{1}, \ 15.2$	7
chloride	planetary ball mill		cutoff filter	μmol h ⁻¹ g ⁻¹	
Melamine and potassium	Molten salt method	-	250 W high-pressure sodium lamp with	H_2O_2 ; 4.6 mmol L ⁻¹	8
chloride-sodium chloride			main emission from 400 to 800 nm		
Melamine and potassium	Molten salt method	-	250 W high-pressure sodium lamp with	Degradation of rhodamine B; RhB	9
chloride-sodium chloride			main emission in the range of 400-800	degradation rate at 90%	

			nm		
Urea and sodium hydroxide	High temperature	Methanol and Pt	250 W high-pressure sodium lamp (400	H_2 and H_2O_2 ; 900	10
	calcination		< \lambda < 800 nm)	μmol h ⁻¹ g ⁻¹ ,800 μmol g ⁻¹	
Melamine and sodium	Thermal	-	300 W xenon lamp with a 420 nm	Tetracycline degradation ; the	11
hydroxide	polymerization		cutoff filter	photocatalytic degradation efficiency is	
				80.61%	

1 Y. Zhang, S. Zong, C. Cheng, J. Shi, X. Guan, Y. Lu and L. Guo, *Int. J. Hydrogen Energy*, 2018, **43**, 13953-13961.

- 2 S. Cao, Q. Huang, B. Zhu and J. Yu, J. Power Sources, 2017, **351**, 151-159.
- 3 J. Jiang, S. Cao, C. Hu and C. Chen, *Chinese J. Catal.*, 2017, **38**, 1981-1989.
- 4 D. Zhao, C. L. Dong, B. Wang, C. Chen, Y. C. Huang, Z. Diao, S. Li, L. Guo, S. Shen, *Adv. Mater.*, 2019, **31**, 935-943.
- 5 H. Wang, M. Li, H. Li, Q. Lu, Y. Zhang and S. Yao, Mater. Des., 2019, 162, 210-218.
- 6 H. Nie, M. Ou, Q. Zhong, S. Zhang and L. Yu, J. Hazard. Mater., 2015, 300, 598-606.
- 7 F. Guo, J. Chen, M. Zhang, B. Gao, B. Lin and Y. Chen, J. Mater. Chem. A, 2016, 4, 10806-10809.
- 8 X. Qu, S. Hu, J. Bai, P. Li, G. Lu and X. Kang, J. Mater. Sci., 2018, 34, 1932-1938.
- 9 J. Zhao, L. Ma, H. Wang, Y. Zhao, J. Zhang and S. Hu, *Appl. Surf. Sci.*, 2015, **332**, 625-630.
- 10 F. Liang, X. Sun, S. Hu, H. Ma, F. Wang and G. Wu, *Diam Relat Mater*, 2020, **108**, 107911.

11 W. Wang, P. Xu, M. Chen, G. Zeng, C. Zhang, C. Zhou, Y. Yang, D. Huang, C. Lai, M. Cheng, L. Hu, W. Xiong, H. Guo and M. Zhou,

ACS Sustain. Chem. Eng., 2018, 6, 15503-15516.

The N_2 adsorption and desorption isotherms of the catalyst after solution regulation are shown in the figure S1. All samples show type IV adsorption desorption isotherms with H_3 hysteresis ring, indicating that the existence of mesoporous structure is the result of the accumulation of flake particles.

Fig. S1 (a) Nitrogen adsorption-desorption isotherms of CN, 2.5 mM NaOH/CN, 7.5 mM NaOH/CN and 10 mM NaOH/CN; (b) The pore size distribution of CN · 2.5 mM NaOH/CN, 7.5 mM NaOH/CN and 10 mM NaOH/CN.

Fi

g. S2 XPS fully scanned spectrum of CN and 7.5 mM NaOH/CN.

Fig. S3 (a) The time courses of H_2 evolution at different pH and (b) the H_2 production of different Na⁺ concentration.

Fig. S4 UV-vis DRS patterns of CN and $(NaOH)_X/CN$ (n = 2.5, 5, 7.5, 10, 20 mM)