Supporting Information

Dunaliella Salinas Based Sn-Carbon Anode for High Performance Li-Ion

Batteries

Yuhua Yang,^{1, 2} Yecheng Dong, ³ Ziwei Zhang, ⁴ Zhichao Xi, ³ Junhuai Xiang,^{1, 2*} Xiaohua Ouyang,¹ Tingting Wang,¹ Li Qiu,¹ Jun Zhou,^{4*}

¹School of Materials and mechanical & electrical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330038, P. R. China

²Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang 330038, P. R. China

³Information Engineering School, Nanchang University, Nanchang 330038, P. R. China

⁴School of Communications and Electronics, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China

*Correspondence to (Jun. Zhou and Junhuai xiang): <u>B12070015@hnu.edu.cn</u>, +8613767508792. Xiangjunhuai@163.com

Supplementary Figure 1: Elemental maps of the C in the sample

Supplementary Figure 2: TEM image of the amorphous carbon (a) and HRTEM image of the amorphous carbon (b)

Supplementary Figure 3: The electrochemical impedance spectra (EIS) before discharging (black line) and after 470 cycling (red line) for the Sn-Carbon composite Anode

Supplementary Figure 3 shows the Electrochemical Impedance Spectroscopy (EIS) of the Sn-

Carbon composite Anode before discharging and after 470 cycling. The radius of curvature of the Sn-Carbon composite in the high and medium frequency region before discharging (125 Ω) is far bigger than the corresponding data after 470 cycling (25 Ω), implying the low meliorative internal resistance with the activation of anode after 470 cycling.

Supplementary Figure 4: TGA data of the Sn-Carbon composite.

Supplementary Figure 4 shows the TGA data of the Sn-Carbon composite, under the 350 °C, the weight of Sn-Carbon composite decreases constantly and fleetly, it mainly due to the loss of C; during the 350-800 °C, its weight decreases slowly, it means that the carbon is almost gone. After 800 °C, it loses its weight sharply, it dues to the change of Sn mainly.

Supplementary Figure 5: Charge/discharge curves at a current density of 1000 mA g⁻¹ at the 1st, 2nd, 10th, 100th, 200th, 400th, 500th cycles.

Supplementary Figure 5 displays that the 400th and 500th Charge/discharge curves coincide very well, and they are in high specific capacities. The 1st, 2nd, 10th specific capacities present a gradual decrease, the 100th, 200th, 400th specific capacities present gradual increase, which evidences the activation phenomenon and the specific capacities have a decrease in the first stage, a succedent increase in the second stage in capacity while cycling.

Supplementary Figure 6: The Charge/discharge curves of amorphous carbon at a current

density of 100 mA g $^{\text{-1}}$ at the 1 $^{\text{st}},$ 2 $^{\text{nd}},$ 5 $^{\text{th}}$ cycles.