Supporting Information

Construction of stable bio-Pd catalysts for environmental

pollutant remediation

Huimei Chen*, Ziniu Zhou, Wei Chen, Ziwei Xiang, Haiyan Nie, Weiguo Yu*

Zhejiang Pharmaceutical College, Ningbo 315503, PR China

Fig. S1 Raman spectra of rGO

^{*} Corresponding authors. Tel.: (+86) 594-88225915; E-mail addresses: chengyi_chm@163.com (H. Chen) and 183010318@qq.com (W.

Fig. S2 TEM images of Pd/yeast/rGO catalysts with Pd particle mean size of (a) 16.7 nm and (b) 21.0 nm

Fig. S3 XPS of the Pd 3d peaks of the Pd/yeast catalysts

Fig. S4 FTIR spectra of GO and rGO

Fig. S5 Zeta potential of the Pd/yeast/rGO catalysts at different pH solution.

Fig. S6 Plot of $\ln(C_t/C_0)$ versus time for the reduction of different particle mean size of Pd/yeast/rGO catalysts (15.1, 16.7 and 21 nm) and Pd/yeast catalyst, Pd/rGO.

cycles	kinetic constant (×10 ⁻² s ⁻¹)	
1	3.6	
2	2.9	
3	2.9	
4	2.6	
5	2.5	
6	2.4	
7	2.3	

Tab. S1 The kinetic constants of Pd/yeast/rGO catalyst after 7 cycles

Fig. S7 TEM image of Pd/yeast/rGO catalysts after 7 cycles

Fig. S8 UV-vis spectrogram of GO, 4-NP and rGO + 4-NP solutions

Catalysts	Catalysts	4-NP	Kinetic	Ref.
	dosage	dosage	constant	
			(\min^{-1})	
Ag ₃ PO ₄ /Ni-Ti	1 mg	4-NP (5 mL, 1 mM)	0.178	1
LDH/GO		solution		
Pd/RGO/Fe ₃ O ₄	5 mg	4-NP (25 mL, 2.5 mM) solution	3.06	2
MXene@PdNPs20	0.3 mg	4-NP (2 mL, 5 mM) solution	10.8	3
Pd/walnut shell	5 mg	4-NP (25 mL, 2.5 mM) solution	(1 min)	4
3D Pd/TiO ₂ - scaffolds		4-NP (2 mL,14.38 mM) solution	2.69	5
Hg/Pd Alloy Nanoparticles	5 mg	4-NP (0.5 mL, 1 mM) solution	3.5	6
Pd/Graphene Catalyst	4 mg	4-NP (40 mL, 0.3 mM) solution	0.666	7
Pd/yeast/rGO	0.24 mg	4-NP (0.7 mL, 1 mM)	2.16	This
		solution		work

Tab. S2 Comparative characteristics of catalysts and catalytic performance to 4-NP

Fig. S9 TGA result of Pichia pastoris GS115

Fig. S10 plot of $\ln(C_t/C_0)$ versus time of Pd/yeast/rGO catalysts in the decolorization of MB

References

1. H. Deng, J. Yin, J. Ma, J. Zhou, L. Zhang, L. Gao and T. Jiao, *Applied Surface Science*, 2021, **543**, 148821.

2. M. Atarod, M. Nasrollahzadeh and S. Mohammad Sajadi, *Journal of Colloid and Interface Science*, 2016, **465**, 249-258.

3. J. Yin, L. Zhang, T. Jiao, G. Zou, Z. Bai, Y. Chen, Q. Zhang, M. Xia and Q. Peng, *Nanomaterials (Basel, Switzerland)*, 2019, **9**.

4. M. Bordbar and N. Mortazavimanesh, *Environmental science and pollution research international*, 2017, **24**, 4093-4104.

5. T. Liu, Y. Sun, B. Jiang, W. Guo, W. Qin, Y. Xie, B. Zhao, L. Zhao, Z. Liang and L. Jiang, *ACS Appl Mater Interfaces*, 2020, **12**, 28100-28109.

6. V. K. Harika, H. K. Sadhanala, I. Perelshtein and A. Gedanken, *Ultrasonics sonochemistry*, 2020, **60**, 104804.

7. Q. Zhao, D. Bu, Z. Li, X. Zhang and L. Di, *Nanomaterials (Basel, Switzerland)*, 2021, **11**.