Sulfhydryl functionalized carbon quantum dots as a turn-off

fluorescent probe for sensitive detection of Hg²⁺

Wei Yao¹, Yingchen Hua², Zhihong Yan¹, Chunxian Wu^{2*}, Feiyan Zhou^{3*}, Yi Liu^{1,2,3*} ¹College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510000, China ²School of pharmaceutical and chemical engineering, Guangdong Pharmaceutical University, Zhongshan 528400, China

³Guangzhou Baiyunshan Weiyi Industrial Co., Ltd, Guangzhou 510000, China *The first corresponding author: E-maill: Liuyi915@126.com.

Fig S1. High resolution XPS spectra of (a) C1s, (b)O1s, (c)N1s of HS-CQDs.

Fig S2. Images of HS-CQDs solutions(1mg/mL) placed for 0h (a), 8h (b) and 24h (c).

Fig S3. Fluorescence spectra of HS-CQDs solutions (25 μ g/mL) placed for 0h, 1h and 2h. λ ex=350nm.

Fig S4. Effect of (a) reaction time $(1 \sim 5 \text{min})$ and (b) pH value $(2 \sim 11)$ on the detection of Hg²⁺(10µM) by HS-CQDs(25 µg/mL). $\lambda \text{ex}=350 \text{nm}$.

Fig S5. UV-Vis spectra for the HS-CQDs (100 $\mu g/mL)$ with or without $Hg^{2+}(50~\mu M).$