Supporting Information for

A Novel 3D Terbium Metal-Organic Framework as a Heterogeneous Lewis Acid Catalyst for the Cyanosilylation of Aldehyde

Yuqian Liu, Peiran Zhao, Chunying Duan, and Cheng He*

Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian 116012, P. R. China. Corresponding author e-mail address: hecheng@dlut.edu.cn
\textbf{1H NMR spectral data of H$_2$sbdc.}

(500 Mhz, DMSO-d$_6$): d = 8.53 (d, J = 8.0 Hz, 2H), 8.50 (s, 2H), 8.46 (d, J = 8.0 Hz).1

\textbf{1H NMR spectral data TMSCN.}

(500 MHz, CDCl$_3$): δ 0.30 (9H, s, SiCH$_3$).

\textbf{1H NMR spectral data 1,3,5-Trimethoxybenzene.}

(500 MHz, CDCl$_3$): δ 3.78 (9H, s, OCH$_3$), 6.10 (3H, s, ArH).2

\textbf{1H NMR spectral data of different aldehydes.}

\textbf{2-Nitobenzaldehyde} (400 MHz, CDCl$_3$): δ 10.40 (s, 1H, CHO), 8.10 (dd, J = 7.6, 1.6 Hz, 1H, Ar-CH), 7.90 (dd, J = 7.2, 1.6 Hz, 1H, Ar-CH), 7.80-7.70 (m, 2H, Ar-CH).3

\textbf{3-Nitobenzaldehyde} (400 MHz, CDCl$_3$): δ 10.12 (s, 1H, CHO), 8.71 (dd, J = 2.3, 1.6 Hz, 1H), 8.50-8.47 (m, 1H), 8.25-8.22 (m, 1H), 7.79-7.75 (m, 1H).4

\textbf{4-Nitobenzaldehyde} (400 MHz, CDCl$_3$): δ 10.18 (s, 1H, CHO), 8.41 (d, J = 8.0 Hz, 2H, Ar-CH), 8.10 (d, J = 8.0 Hz, 2H, Ar-CH).3

\textbf{2-Naphthaldehyde} (400 MHz, CDCl$_3$): δ 10.37 (s, 1H, CHO), 9.26 (d, J = 8.7 Hz, 1H), 8.06 (d, J = 8.2 Hz, 1H), 7.94 (dd, J = 7.1, 1.2 Hz, 1H), 7.89 (d, J = 8.2 Hz, 1H), 7.70-7.65 (m, 1H), 7.61-7.55 (m, 2H).5

\textbf{o-Methoxybenzaldehyde} (500 MHz, CDCl$_3$): δ 10.45 (s, 1H, CHO), 7.82-7.80 (dd, 1H, J = 9.6, 2.3 Hz), 7.56-7.51 (ddd, 1H, J = 10.6, 9.2, 2.3 Hz), 7.03-6.96 (m, 2H), 3.91 (s, 3H).6

\textbf{m-Methoxybenzaldehyde} (400 MHz, CDCl$_3$): δ 9.94 (s, 1H, CHO), 7.45-7.38 (m, 2H), 7.36 (d, J = 1.9 Hz, 1H), 7.16-7.13 (m, 1H), 3.83 (s, 3H).5

\textbf{p-Methoxybenzaldehyde} (400 MHz, CDCl$_3$): δ 9.83 (s, 1H, CHO), 8.17-7.55 (m, 2H, Ar-CH), 6.59 (d, J = 8.7 Hz, 2H, Ar-CH), 3.83 (m, 3H, OCH$_3$).3

\textbf{Heptanal} (400 MHz, CDCl$_3$): δ 9.74 (s, 1H, CHO), 7.82 (t, 2H), 1.63-1.57 (m, 2H), 1.39-1.21 (m, 6H), 0.90-0.83 (t, 3H).7

\textbf{Salicylaldehyde} (500 MHz, CDCl$_3$): δ 11.06 (s, 1H, -OH), 9.93 (s, 1H, -CHO), 7.60 (m, 1H, ArH), 7.56 (m, 1H, ArH), 7.07 (m, 1H, ArH), 7.03 (m, 1H, ArH).8

\textbf{4-Biphenylcarboxaldehyde} (500 MHz, CDCl$_3$): 7.40-7.52 (3H, m, H-Ar), 7.75 (2H, d, J = 7.6 Hz, H-Ar), 7.86 (2H, d, J = 6.8 Hz, H-Ar), 7.98 (2H, d, J = 6.8 Hz, H-Ar), 10.05 (1H, s, CHO).9

\textbf{4-(Diethylamino)salicylaldehyde} (400 MHz, CDCl$_3$): δ 11.65 (br, 1H, CHO), 9.49 (s, 1H), 7.27 (d, J = 8.8 Hz, 1H), 6.27 (d, J = 10.2 Hz, 1H), 6.08 (s, 1H), 3.41 (q, J = 7.0 Hz, 4H), 1.22 (t, J = 7.1 Hz, 6H).10

\textbf{4-Benzoxylbenzaldehyde} (400 MHz; CDCl$_3$): 5.15 (2H, s, PhCH$_2$), 7.08 (2H, d, J = 8.7 Hz, ArH), 7.34-7.47 (5H, m, ArH overlapping), 7.84 (2H, d, J = 8.8 Hz, ArH) and 9.89 (1H, s, HC=O).11

\textbf{1H NMR spectral data of the product of different aldehydes in cyanosilylation.}

The product of 2-Nitobenzaldehyde 1H-NMR (500 MHz, CDCl$_3$): δ 8.18-8.20 (d, 1H, J = 8.20 Hz), 7.97-7.99 (d, 1H, J = 8.20 Hz), 7.78-7.82 (t, 1H, J = 7.80 Hz),
7.63-7.66 (t, 1H, $J = 7.80$ Hz), 6.20 (s, 1H), 0.07 (s, 9H).12

The product of 3-Nitobenzaldehyde (300 MHz, CDCl₃): δ 0.29 (s, 9H, Si(CH₃)₃), 5.60 (s, 1H, CHOSi(CH₃)₃), 7.63 (t, $J = 4.5$ Hz, 1H, Ph), 7.84 (d, $J = 6.0$ Hz, 1H, Ph), 8.26 (d, $J = 8.0$ Hz, 1H, Ph), 8.34 (s, 1H, Ph).13

The product of 4-Nitobenzaldehyde (600 MHz, CDCl₃): δ 0.29 (s, 9H, Si(CH₃)₃), 5.64 (s, 1H, OCHCN), 6.68 (d, $J = 8.4$ Hz, 2H, ArH), 8.28 (d, $J = 8.4$ Hz, 2H, ArH).14

The product of 2-Naphthaldehyde (200 MHz, CDCl₃): δ 0.11 (s, 9H, Si(CH₃)₃), 5.95 (s, 1H, CHOSi(CH₃)₃), 7.37-7.63(m, 4H, Ph), 7.78(d, $J = 7.5$ Hz, 2H, Ph), 8.07(d, $J = 8.0$ Hz, 1H, Ph).15

The product of o-Methoxybenzaldehyde (300 MHz, CDCl₃) δ 7.62-7.58 (m, 1H), 7.40-7.33 (m, 1H), 7.08-6.98 (m, 1H), 6.94-6.86 (m, 1H), 5.81 (s, 1H), 3.89 (s, 3H), 0.41-0.14 (m, 9H).16

The product of m-Methoxybenzaldehyde (400 MHz, CDCl₃): δ 7.32 (t, 1H, $J = 7.9$ Hz, aromatics), 7.05-7.02 (m, 2H, aromatics), 6.92 (dd, 1H, $J = 8.2$, 2.0 Hz aromatic), 5.47 (s, 1H, CHCN), 3.83 (s, 3H, CH₃O), 0.24 (s, 9H, Si(CH₃)₃).17

The product of p-Methoxybenzaldehyde (250 MHz, CDCl₃): δ 7.38 (d, 2H, $J = 8.8$ Hz, Ph-2H, 6H), 6.92 (d, 2H, $J = 8.8$ Hz, Ph-3H, 5H), 5.43 (s, 1H, CH), 3.82 (s, 3H, OCH₃), 0.21 (s, 9H, (CH₃)₃).18

The product of Heptanal (400 MHz, CDCl₃): δ 0.20(9H, s), 0.89(3H, t), 1.25-1.36(6H, m), 1.40-1.48(2H, m), 1.75-1.81(2H, m), 4.38(1H, t).19

The product of Salicylaldehyde δ 11.50 (br, 1H), 7.62-7.58 (m, 1H), 7.40-7.33 (m, 1H), 7.08-6.98 (m, 1H), 6.94-6.86 (m, 1H), 5.57 (s, 1H), 0.22(s, 9H).20

The product of 4-Biphenylcarboxaldehyde (400 MHz, CDCl₃): δ 7.60−7.51 (m, 7H), 7.45−7.41 (m, 2H), 7.36−7.33 (m, 1H), 5.53 (s, 1H), 0.25 (s, 9H).21

The product of 4-(Diethylamino)salicylaldehyde (400 MHz, CDCl₃): δ 11.50 (br, 1H), 7.27 (d, $J = 8.8$ Hz, 1H), 6.27 (d, $J = 10.2$ Hz, 1H), 6.08 (s, 1H), 3.41 (q, $J = 7.0$ Hz, 4H), 1.22 (t, $J = 7.1$ Hz, 6H), 0.25 (s, 9H).22

The product of 4-Benzoylbenzaldehyde (200 MHz, CDCl₃): 0.22 (s, 9H), 5.46 (s, 1H), 6.99-7.13 (m, 5H), 7.31-7.44 (m, 4H).23

The method for calculating the conversion.

1,3,5-Trimethoxybenzene had 3 H protons on benzene ring (δ ppm = 6.10). All the product had 1 H proton on their chiral C proton. Consequently, the yield of the reactions could be read from the 1H spectrum directly, as the same amount of 1,3,5-Trimethoxybenzene (compared to the aldehyde) was added into the system before monitoring the 1H spectrum.

![Fig. S1 Chemical structure of H₂sbdc.](image-url)
Fig. S2 MS for H$_2$sbdc.

Fig. S3 1H-NMR for H$_2$sbdc.
Fig. S4 1H-NMR for TMSCN.

Fig. S5 1H-NMR for 1,3,5-Trimethoxybenzene.
Fig. S6 1H-NMR for catalysis of 2-nitrobenzaldehyde 2.4 eqv TMSCN in DCM for 12h.

Yield = 78%

Fig. S7 1H-NMR for catalysis of 3-nitrobenzaldehyde 2.4 eqv TMSCN in DCM for 12h.

Yield = 85%
Fig. S8 1H-NMR for catalysis of 4-nitrobenzaldehyde 2.4 eqv TMSCN in DCM for 12h.
Yield = 81%

Fig. S9 1H-NMR for catalysis of 2-naphthaldehyde 2.4 eqv TMSCN in DCM for 12h.
Yield = 77%
Fig. S10 ¹H-NMR for catalysis of 2-methoxybenzaldehyde 2.4 eqv TMSCN in DCM for 12h.
Yield = 82%

Fig. S11 ¹H-NMR for catalysis of 3-methoxybenzaldehyde 2.4 eqv TMSCN in DCM for 12h.
Yield = 79%
Fig. S12 1H-NMR for catalysis of 4-methoxybenzaldehyde 2.4 eqv TMSCN in DCM for 12h.
Yield = 78%

Fig. S13 1H-NMR for catalysis of heptanal 2.4 eqv TMSCN in DCM for 12h.
Yield = 74%
Fig. S14 1H-NMR for catalysis of salicylaldehyde 2.4 eqv TMSCN in DCM for 12h. Yield = 85%

Fig. S15 1H-NMR for catalysis of 4-Biphenylcarboxaldehyde 2.4 eqv TMSCN in DCM for 12h. Yield = 83%
Fig. S16 1H-NMR for catalysis of 4-(diethylamino)salicylaldehyde 2.4 eqv TMSCN in DCM for 12h.
Yield = 56%

Fig. S17 1H-NMR for catalysis of 4-benzyloxybenzaldehyde 2.4 eqv TMSCN in DCM for 12h.
Yield = 67%
Fig. S18 1H-NMR for catalysis of 4-methoxybenzaldehyde 2.4 eqv TMSCN in EtOH for 12h.
Yield = 0%

Fig. S19 1H-NMR for catalysis of 4-methoxybenzaldehyde 2.4 eqv TMSCN in MeOH for 12h.
Yield = 14%
Fig. S20 1H-NMR for catalysis of 4-methoxybenzaldehyde 2.4 eqv TMSCN in THF for 12h.
Yield = 82%

Fig. S21 1H-NMR for catalysis of 4-methoxybenzaldehyde 2.4 eqv TMSCN in CH$_3$CN for 12h.
Yield = 85%
Fig. S22 1H-NMR for catalysis of 4-methoxybenzaldehyde with 2.4 eqv TMSCN in solvent free condition for 12h.
Yield = 12.27/(1+12.27) = 92%

Fig. S23 1H-NMR for catalysis of 4-methoxybenzaldehyde in DCM with 0 eqv TMSCN for 12h.
Yield = 0%
Fig. S24 1H-NMR for catalysis of 4-methoxybenzaldehyde in DCM with 0.5 eqv TMSCN for 12h.
Yield = 5%

Fig. S25 1H-NMR for catalysis of 4-methoxybenzaldehyde in DCM with 1 eqv TMSCN for 12h.
Yield = 46%
Fig. S26 1H-NMR for catalysis of 4-methoxybenzaldehyde in DCM with 3 eqv TMSCN for 12h.
Yield = 82%

Fig. S27 1H-NMR for catalysis of 4-methoxybenzaldehyde in DCM with 2.4 eqv TMSCN for 1h.
Yield = 9%
Fig. S28 1H-NMR for catalysis of 4-methoxybenzaldehyde in DCM with 2.4 eqv TMSCN for 2h.
Yiled = 25%

Fig. S29 1H-NMR for catalysis of 4-methoxybenzaldehyde in DCM with 2.4 eqv TMSCN for 3h.
Yiled = 36%
Fig. S30 \(^1\)H-NMR for catalysis of 4-methoxybenzaldehyde in DCM with 2.4 eqv TMSCN for 4h.
Yield = 50%

Fig. S31 \(^1\)H-NMR for catalysis of 4-methoxybenzaldehyde in DCM with 2.4 eqv TMSCN for 5h.
Yield = 58%
Fig. S32 1H-NMR for catalysis of 4-methoxybenzaldehyde in DCM with 2.4 eqv TMSCN for 6h.
Yiled = 61%

Fig. S33 1H-NMR for catalysis of 4-methoxybenzaldehyde in DCM with 2.4 eqv TMSCN for 7h.
Yiled = 65%
Fig. S34 1H-NMR for catalysis of 4-methoxybenzaldehyde in DCM with 2.4 eqv TMSCN for 8h.
Yiled = 67%

Fig. S35 1H-NMR for catalysis of 4-methoxybenzaldehyde in DCM with 2.4 eqv TMSCN for 9h.
Yiled = 70%
Fig. S36 1H-NMR for catalysis of 4-methoxybenzaldehyde in DCM with 2.4 eqv TMSCN for 10h.
Yiled = 73%

Fig. S37 1H-NMR for catalysis of 4-methoxybenzaldehyde in DCM with 2.4 eqv TMSCN for 11h.
Yiled = 75%
Fig. S38 1H-NMR for catalysis of 4-methoxybenzaldehyde in DCM with 2.4 eqv TMSCN for 12h. Yiled = 77%

Fig. S39 1H-NMR for catalysis of 2-methoxybenzaldehyde without any catalyst in DCM with 2.4 eqv TMSCN for 12h. Yiled = 0%
Fig. S40 1H-NMR for catalysis of 3-methoxybenzaldehyde without any catalyst in DCM with 2.4 eqv TMSCN for 12h.
Yield = 0%

Fig. S41 1H-NMR for catalysis of 4-methoxybenzaldehyde without any catalyst in DCM with 2.4 eqv TMSCN for 12h.
Yield = 0%
Fig. S42 1H-NMR for catalysis of 2-methoxybenzaldehyde with H$_2$sbdc as the catalyst in DCM with 2.4 eqv TMSCN for 12h.
Yiled = 0%

Fig. S43 1H-NMR for catalysis of 3-methoxybenzaldehyde with H$_2$sbdc as the catalyst in DCM with 2.4 eqv TMSCN for 12h.
Yiled = 0%
Fig. S44 ¹H-NMR for catalysis of 4-methoxybenzaldehyde with H₂sbdc as the catalyst in DCM with 2.4 eqv TMSCN for 12h.
Yiled = 0%

Fig. S45 ¹H-NMR for catalysis of 2-methoxybenzaldehyde in DCM with 2.4 eqv TMSCN for 4h.
Yiled = 28%
Fig. S46 1H-NMR for catalysis of 3-methoxybenzaldehyde in DCM with 2.4 eqv TMSCN for 4h.
Yield = 30%

Fig. S47 1H-NMR for catalysis of 4-methoxybenzaldehyde in DCM with 2.4 eqv TMSCN for 4h.
Yield = 41%
Fig. S48 1H-NMR for catalysis of 2-methoxybenzaldehyde in DCM with 2.4 eqv TMSCN for 12h (catalyst filtered at 4h).
Yiled = 46%

Fig. S49 1H-NMR for catalysis of 3-methoxybenzaldehyde in DCM with 2.4 eqv TMSCN for 12h (catalyst filtered at 4h).
Yiled = 43%
Fig. S50 ¹H-NMR for catalysis of 4-methoxybenzaldehyde in DCM with 2.4 eqv TMSCN for 12h (catalyst filtered at 4h).

Yiled = 47%

Fig. S51 ¹H-NMR for catalysis of 2-methoxybenzaldehyde with 2 eqv catalyst in DCM with 2.4 eqv TMSCN for 12h.

Yiled = 81%
Fig. S52 \(^1\)H-NMR for catalysis of 3-methoxybenzaldehyde with 2 eqv catalyst in DCM with 2.4 eqv TMSCN for 12h.
Yiled = 83%

Fig. S53 \(^1\)H-NMR for catalysis of 4-methoxybenzaldehyde with 2 eqv catalyst in DCM with 2.4 eqv TMSCN for 12h.
Yiled = 80%
Fig. S54 1H-NMR for catalysis of 2-methoxybenzaldehyde with in DCM with 2.4 eqv TMSCN for 12h for the second cycle.
Yiled = 82%

Fig. S55 1H-NMR for catalysis of 2-methoxybenzaldehyde with in DCM with 2.4 eqv TMSCN for 12h for the third cycle.
Yiled = 87%
Fig. S56 1H-NMR for catalysis of 2-methoxybenzaldehyde with in DCM with 2.4 eqv TMSCN for 12h for the forth cycle. Yiled = 70%

Fig. S57 1H-NMR for catalysis of 3-methoxybenzaldehyde with in DCM with 2.4 eqv TMSCN for 12h for the second cycle. Yiled = 83%
Fig. S58 ¹H-NMR for catalysis of 3-methoxybenzaldehyde with in DCM with 2.4 eqv TMSCN for 12h for the third cycle.
Yiled = 74%

Fig. S59 ¹H-NMR for catalysis of 3-methoxybenzaldehyde with in DCM with 2.4 eqv TMSCN for 12h for the forth cycle.
Yiled = 61%
Fig. S60 ¹H-NMR for catalysis of 4-methoxybenzaldehyde with in DCM with 2.4 eqv TMSCN for 12h for the forth cycle.
Yiled = 74%

Fig. S61 ¹H-NMR for catalysis of 4-methoxybenzaldehyde with in DCM with 2.4 eqv TMSCN for 12h for the forth cycle.
Yiled = 68%
Fig. S62 ¹H-NMR for catalysis of 4-methoxybenzaldehyde with in DCM with 2.4 eqv TMSCN for 12h for the forth cycle. Yiled = 55%

Fig. S63 The yields of cyanosilylation of aldehyde with different amounts of TMSCN (0.5 mmol p-methoxybenzaldehyde, 0.01 mmol Tb-MOF, different amounts of TMSCN, in 2 mL DCM at room temperature under Ar condition). As TMSCN was one of the reactant of the reaction, the amount of TMSCN could affect the yields of the reaction. Consequently, different amounts of TMSCN were added into the reaction and stirred for 12 h. Fig. S63 showed that the yields of 0 equivalent and 0.5 equivalents of TMSCN (compared to the aldehyde) were below 10%, while the yield of 1 equivalent and 2.4 equivalent of TMSCN were about 46%
and 78%, respectively. It was worth noting that the yield had no significant increase when the amount of TMSCN was 3 equivalent, which encouraged us to choose 2.4 equivalent of TMSCN for further study.

Fig. S64 Catalytic traces of cyanosilylation of p-methoxybenzaldehyde with Tb-MOF (0.5 mmol p-methoxybenzaldehyde, 1.2 mmol TMSCN, 0.01 mmol Tb-MOF, in 2 mL DCM at room temperature under Ar condition)

To explore the speed of the reaction catalyzed by Tb-MOF, catalytic traces of cyanosilylation was carried out. Fig.S64 showed that the speed of the reaction slowed down after 7 h, and the yield hardly increased after 12 h. Consequently, as the concentration of the substrate getting lower, the speed of the reaction slowed down, which demonstrated that Tb-MOF had an efficient ability for catalyzing cyanosilylation at room temperature. Also, 12 h for the reaction in this condition was enough for further study.

Fig. S65 The possible mechanism of cyanosilylation catalyzed by Tb-MOF.17
Table S1 Crystal data and structure refinement for Tb-sbdc.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{42}H_{24}O_{21}S_{3}Tb_{2}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>1278.63</td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>0.71073</td>
</tr>
<tr>
<td>Crystal size (mm)</td>
<td>0.240×0.220×0.200</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>296 (2)</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P-1</td>
</tr>
<tr>
<td>a (Å)</td>
<td>13.907 (1)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>14.243 (1)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>14.994 (1)</td>
</tr>
<tr>
<td>α (deg)</td>
<td>118.151 (1)</td>
</tr>
<tr>
<td>β (deg)</td>
<td>99.052 (2)</td>
</tr>
<tr>
<td>γ (deg)</td>
<td>103.126 (2)</td>
</tr>
<tr>
<td>Volume (Å³)</td>
<td>2426.3 (3)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Calculated density (Mg/m³)</td>
<td>1.750</td>
</tr>
<tr>
<td>Absorption coefficient (mm⁻¹)</td>
<td>3.097</td>
</tr>
<tr>
<td>F (000)</td>
<td>1244</td>
</tr>
<tr>
<td>θ range for data collection (deg)</td>
<td>1.882 - 25.000</td>
</tr>
<tr>
<td>Limiting indices</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-16<=h<=16</td>
</tr>
<tr>
<td></td>
<td>-16<=k<=16</td>
</tr>
<tr>
<td></td>
<td>-17<=l<=17</td>
</tr>
<tr>
<td>Reflections collected / unique</td>
<td>52159 / 8540 [R_{int} = 0.0603]</td>
</tr>
<tr>
<td>Completeness to θ = 25.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>8540 / 0 / 631</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.079</td>
</tr>
<tr>
<td>Final R indices [I>2σ(I)]</td>
<td>R₁ = 0.0337; wR₂ = 0.0882</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R₁ = 0.0462; wR₂ = 0.0928</td>
</tr>
<tr>
<td>Largest diff. Peak and hole(e·Å⁻³)</td>
<td>1.811 and -0.612</td>
</tr>
</tbody>
</table>

R₁ = \sum |F_o| - |F_c|/\sum |F_o|; \quad wR₂ = [\sum w(|F_o|^2 - |F_c|^2)\sum w(F_c^2)]^{1/2}; \quad w = 1/[(\sigma^2(F_c^2) + (xP)^2 + yP)]^2; \quad P = (F_o^2 + 2F_c^2)/3.
<table>
<thead>
<tr>
<th>Bond Lengths [Å]</th>
<th>Angles [deg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tb(1)-O(3)#1</td>
<td>2.276(4)</td>
</tr>
<tr>
<td>Tb(1)-O(9)#2</td>
<td>2.323(4)</td>
</tr>
<tr>
<td>Tb(1)-O(4)</td>
<td>2.374(4)</td>
</tr>
<tr>
<td>Tb(1)-O(11)</td>
<td>2.475(4)</td>
</tr>
<tr>
<td>Tb(2)-O(16)#3</td>
<td>2.260(4)</td>
</tr>
<tr>
<td>Tb(2)-O(10)#2</td>
<td>2.309(4)</td>
</tr>
<tr>
<td>Tb(2)-O(14)</td>
<td>2.452(4)</td>
</tr>
<tr>
<td>Tb(2)-O(12)</td>
<td>2.511(4)</td>
</tr>
<tr>
<td>O(11)-Tb(1)-O(6)</td>
<td>120.52(13)</td>
</tr>
<tr>
<td>O(3)#1-Tb(1)-O(9)#2</td>
<td>141.10(15)</td>
</tr>
<tr>
<td>O(3)#1-Tb(1)-O(5)#1</td>
<td>75.43(14)</td>
</tr>
<tr>
<td>O(9)#2-Tb(1)-O(5)#1</td>
<td>78.87(14)</td>
</tr>
<tr>
<td>O(19)-Tb(1)-O(4)</td>
<td>78.70(14)</td>
</tr>
<tr>
<td>O(5)#1-Tb(1)-O(4)</td>
<td>75.15(14)</td>
</tr>
<tr>
<td>O(19)-Tb(1)-O(7)</td>
<td>79.53(15)</td>
</tr>
<tr>
<td>O(5)#1-Tb(1)-O(7)</td>
<td>140.50(15)</td>
</tr>
<tr>
<td>O(3)#1-Tb(1)-O(11)</td>
<td>141.94(13)</td>
</tr>
<tr>
<td>O(9)#2-Tb(1)-O(11)</td>
<td>72.42(13)</td>
</tr>
<tr>
<td>O(4)-Tb(1)-O(11)</td>
<td>74.40(13)</td>
</tr>
<tr>
<td>O(3)#1-Tb(1)-O(6)</td>
<td>73.59(15)</td>
</tr>
<tr>
<td>O(9)#2-Tb(1)-O(6)</td>
<td>70.84(15)</td>
</tr>
<tr>
<td>O(4)-Tb(1)-O(6)</td>
<td>139.07(14)</td>
</tr>
<tr>
<td>O(12)-Tb(2)-O(11)</td>
<td>51.65(11)</td>
</tr>
<tr>
<td>O(16)#3-Tb(2)-O(10)#2</td>
<td>145.71(15)</td>
</tr>
<tr>
<td>O(16)#3-Tb(2)-O(15)#4</td>
<td>103.27(14)</td>
</tr>
<tr>
<td>O(10)#2-Tb(2)-O(15)#4</td>
<td>78.34(14)</td>
</tr>
<tr>
<td>O(8)-Tb(2)-O(14)</td>
<td>139.51(14)</td>
</tr>
<tr>
<td>O(15)#4-Tb(2)-O(14)</td>
<td>74.49(14)</td>
</tr>
<tr>
<td>O(8)-Tb(2)-O(13)</td>
<td>68.56(14)</td>
</tr>
<tr>
<td>O(15)#4-Tb(2)-O(13)</td>
<td>142.73(14)</td>
</tr>
<tr>
<td>O(16)#3-Tb(2)-O(12)</td>
<td>75.54(13)</td>
</tr>
<tr>
<td>O(10)#2-Tb(2)-O(12)</td>
<td>135.38(13)</td>
</tr>
<tr>
<td>O(14)-Tb(2)-O(12)</td>
<td>127.93(13)</td>
</tr>
<tr>
<td>O(16)#3-Tb(2)-O(11)</td>
<td>126.66(13)</td>
</tr>
<tr>
<td>O(10)#2-Tb(2)-O(11)</td>
<td>86.83(13)</td>
</tr>
<tr>
<td>O(14)-Tb(2)-O(11)</td>
<td>144.17(13)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:

#1: -x, -y+1, -z+1
#2: -x, -y+2, -z+1
#3: x+1, y, z
#4: -x, -y+2, -z+2
References
7 Ismail I.; Muhammad I.; Oscar V.; Alireza E.; Peter O.; Håkan E.; Cheuk-Wai T.; Magnus N.; Eric J.; Copper Nanoparticles on Controlled Pore Glass and TEMPO for the Aerobic Oxidation of Alcohols, ChemNanoMat, 2018, 4, 71-75.
8 Wei Z.; Ziqiang X.; Jiajun W.; Wenqin F.; Rong T.; Donghong Y.; Selective Aerobic Oxidation of Alcohols over Gold-Palladium Alloy Catalysts Using Air at Atmospheric Pressure in Water, ChemCatChem, 11, 6, 1779-1788.
9 Ali M.; Reza T.; Reza G.; Design and Fabrication of a Magnetite-based Polymer-supported Hybrid Nanocomposite: A Promising Heterogeneous Catalytic System Utilized in Known Palladium-assisted Coupling Reactions, Combinatorial Chemistry & High Throughput Screening, 23, 2, 119-125.
10 Yujian M.; Ye L.; Yanwei H.; Liang W.; Shilei Z.; Wei W.; Pd-Catalyzed Debenzylation and Deallylation of Ethers and Esters with Sodium Hydride, ACS Catal., 2018, 8, 3016-3020.
15 Sandeep Y.; Ruchi D.; Dr. Kumar V.; Dr. Sakya S.; Beyond Hydrofunctionalisation: A Well-Defined Calcium Compound Catalysed Mild and Efficient Carbonyl Cyanosilylation, Chemistry-A European Journal, 24, 6, 1269.
16 Johannes K.; Toni S.; Oliver S.; Athanassios G.; Lewis Acid Mediated Nazarov Cyclization as a Convergent and Enantioselective Entry to C-nor-D-homo-Steroids, Chemistry-A European Journal, 23, 21, 5000.
19 Giacomo S.; Daniela L.; Dmitri G.; Ferdinando P.; Ornelio R.; Massimo C.; Luigi V.; Efficient synthesis of cyanohydrin trimethylsilyl ethers via 1,2-chemoselective cyanosilylation of carbonyls Green Chem., 2013, 15, 199-204.
22 Zhi C.; Jian W.; Yanan Z.; Mingqiao G.; Preparation of color tuned highly emissive long-lasting phosphor with warm-toned emitting color based on coating red-emitting coumarin fluorescent dye color converter and PMMA on SrAl2O4:Eu2+, Dy3+ phosphor, Dyes and Pigments, 143 (2017) 190-195.