Electronic Supporting Information

An excellent water-stable 3D Zn-MOF with 8-fold interpenetrated diamondiod topology showing "Turn-On/Turn-Off" luminescent detection of Al³⁺ and SNT in aqueous media

¹Xiuting Gao,^{a 1}Xiaohe Wang,^a Miaomiao Feng,^a Ming Yang,^b Qingfu Zhang^{*a}

^a College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
 ^b Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China

[¶]X. T. Gao and X. H. Wang contributed equally to this paper

*Corresponding author: Q. F. Zhang, E-mail: zhangqingfu@lcu.edu.cn

Supplementary Figures

Fig. S1 Coordination environment of Zn(II) in **1**, the isolated H₂O molecules, isolated DMF molecule and H atoms are omitted for clarity. (A: x-3/2, -y+1/2, z-1/2; B: x-1/2, -y+3/2, z+1/2)

Fig. S2 (a) Coordination modes of carboxylate groups in L^{2-} ligand. (b) Coordination modes of N atoms in dpe ligand.

Fig. S3 Solvent molecules of DMF and H_2O in 1 are represented as space filling spheres along the [101] (a) and [0-11] (b) directions.

Fig. S4 (a) TGA curves of 1 and 1a. (b) Variable-temperature PXRD patterns for 1.

Fig. S5 (a) PXRD patterns of simulated, as-synthesized, activated, as well as **1a** after immersion in water and boiling water. (b) Water contact angle of **1a**.

Fig. S6 The emission spectrum of H_2L ligand and 1a dispersed in water at room temperature.

Fig. S7 The pH-dependence of various Al(III) species in aqueous solution.

Fig. S8 Recyclability experiments of 1a implemented with Al³⁺.

Fig. S9 XPS spectra of 1a and 1a+Al³⁺.

Fig. S10 IR spectra of 1a and 1a+Al³⁺.

Fig. S11 Absorption spectra of AI^{3+} in the concentration of 10^{-5} mol·L⁻¹ in aqueous solution.

Fig. S12 Recyclability experiment of 1a implemented with SNT.

Supplementary Tables

Empirical formula	$C_{43}H_{45}N_5O_{10}Zn$
Formula weight	857.25
Temperature (K)	298(2)
Wavelength (Å)	0.71073
Crystal system	Monoclinic
Space group	P2 ₁ /n
<i>a</i> (Å)	12.811 (1)
<i>b</i> (Å)	19.034 (2)
<i>c</i> (Å)	17.420 (2)
6 (°)	91.017 (2)
Volume (ų)	4247.0 (7)
Ζ	4
Calculated density (mg·m ⁻³)	1.341
Absorption coefficient (mm ⁻¹)	0.641
F(000)	1792
Crystal size (mm)	0.42 × 0.26 × 0.10
Theta range for data collection (°)	2.4385 to 21.593
Limiting indices	-15≤h≤12, -22≤k≤17, -20≤l≤18
Reflections collected/unique	19558/7426[Rint = 0.084]
Completeness to ϑ = 25.02°	99.1%
Data/restraints/parameters	7426/0/536
Goodness-of-fit on <i>F</i> ²	1.073
Final <i>R</i> indices [$I>2\sigma(I)$]	R_1 = 0.065, wR_2 = 0.109

 Table S1. Crystal data and structure refinement parameters for 1.

1.973 (3)	Zn1—06A	1.962 (3)
2.013 (4)	Zn1—N4B	2.044 (3)
115.49 (13)	O1—Zn1—N4B	96.44 (15)
121.11 (16)	N3—Zn1—N4B	106.44 (14)
107.46 (14)	O6A—Zn1—N4B	106.62 (13)
	1.973 (3) 2.013 (4) 115.49 (13) 121.11 (16) 107.46 (14)	1.973 (3) Zn1-O6A 2.013 (4) Zn1-N4B 115.49 (13) O1-Zn1-N4B 121.11 (16) N3-Zn1-N4B 107.46 (14) O6A-Zn1-N4B

 Table S2.
 Selected bond lengths (Å) and angles (°) for 1.

z+1/2.

Table S3. The LOD comparison of **1a** and some reported MOF sensors toward AI^{3+} .

MOFs	Analyte	LOD (ppb)	Ref.
UiO-66-NH ₂ -SA	Al ³⁺	930.7	S1
Zn(DMA)(TBA)	Al ³⁺	262.7	S2
NUM-2	Al ³⁺	100.0	S3
[Co(OBA)(DATZ) _{0.5} (H ₂ O)]	Al ³⁺	57.5	S4
MOF 1a	Al ³⁺	41.9	This work

Analytes	HOMO (ev)	LUMO (ev)
SNT	-8.198	-1.171
AZM	-4.080	-0.850
ROX	-4.710	-0.850
SDZ	-7.564	0.016
SMX	-7.599	0.126
SMZ	-7.507	0.218
GEN	-6.330	1.360

Table S4. HOMO and LUMO energies for the selected antibiotics by DFT calculations.

 Table S5. Al³⁺ and SNT determination in tap water, Dongchang Lake and Yellow River.

Samples	Analyte	Added [µM]	Found [µM]	Recovery [%]	RSD [%]
Tap water	Al ³⁺	0	not detected	_	—
		20	20.48	102.4	2.1
		40	37.46	93.7	1.9
	SNT	0	not detected	_	_
		20	20.98	104.9	4.2
		40	38.13	95.3	2.6
	Al ³⁺	0	not detected	_	—
Dongchang Lake		20	21.51	107.6	2.8
		40	38.8	97.0	1.5
	SNT	0	not detected	_	_
		20	21.18	105.9	4.8
		40	38.46	96.2	2.9
Yellow River		0	not detected	_	_
	Al ³⁺	20	20.51	102.6	3.0
		40	37.80	107.6	1.1
	SNT	0	not detected	_	_
		20	20.85	104.2	2.7
		40	39.80	99.5	2.2

References

- S1. S. Y. Zhu and B. Yan, *Dalton Trans.*, 2018, **47**, 1674-1681.
- S2. X. Zhang, X. Luo, N. X. Zhang, J. Wu and Y. Q. Huang, *Inorg. Chem. Front.*, 2017, 4, 1888-1894.
- S3. M. H. Yu, T. L. Hu and X. H. Bu, Inorg. Chem. Front., 2017, 4, 256-260.
- S4. D. K. Singha and P. Mahata, Inorg. Chem., 2015, 54, 6373-6379.