Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Photoresponsive, Switchable, Pressure-Sensitive Adhesives: Influence of UV Intensity and Hydrocarbon Chain Length of Low Molecular Weight Azobenzene Compounds

Tae-Hyung Lee,^a Gi-Yeon Han,^a Mo-Beom Yi,^a Jae-Ho Shin,^a and Hyun-Joong Kim^{*a,b}

 ^aLaboratory of Adhesion and Bio-Composites, Program in Environmental Materials Science
 Department of Agriculture, Forestry and Bioresources Seoul National University
 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea

^bResearch Institute of Agriculture and Life Sciences, Seoul National University
1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea

* Corresponding Author
Prof. Hyun-Joong Kim
Laboratory of Adhesion & Bio-Composites
Program in Environmental Materials Science
Department of Agriculture, Forestry and Bioresources
Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
Tel.: +82-2-880-4784; fax: +82-2-873-2318; E-mail: hjokim@snu.ac.kr (www.adhesion.kr)

- Synthetic route for the azobenzene-containing acrylic monomer and low molecular weight

azobenzene compounds

Figure S1. Synthetic route for a) the azobenzene-containing acrylic monomer (azo-acrylate) and b) the low molecular weight azobenzene compounds (azo-compounds).

- NMR spectra

6-(4-(phenyldiazenyl)phenoxy)hexan-1-ol

¹H NMR (400 MHz, DMSO-d6, δ): 7.83 (m, 4H, Ar H), 7.51 (m, 3H, Ar H), 7.08 (m, 2H, Ar H), 4.03 (m, 2H, OCH₂), 3.37 (m, 2H, <u>CH₂OH</u>), 1.71 (m, 2H, OCH₂<u>CH₂CH</u>₂), 1.38 (m, 6H, OCH₂CH₂<u>CH₂CH₂CH₂CH</u>₂)

Figure S2. ¹H-NMR spectrum of 6-(4-(phenyldiazenyl)phenoxy)hexan-1-ol

2-((((6-(4-(phenyldiazenyl)phenoxy)hexyl)oxy)carbonyl)amino)ethyl acrylate (azo-acrylate)

¹H NMR (400 MHz, DMSO-d6, δ): 7.83 (m, 4H, Ar H), 7.51 (m, 3H, Ar H), 7.23 (m, 1H, NH), 7.08 (m, 2H, Ar H), 6.31 (m, 1H, C=CH), 6.12 (m, 1H, C=CH), 5.91 (m, 1H, C=CH), 4.04 (m, 4H, Ar-OCH₂, NHCH₂<u>CH₂</u>), 3.90 (t, 2H, <u>CH₂OOCNH</u>), 3.21 (m, 2H, NH<u>CH₂</u>), 1.71 (m, 2H, Ar-OCH₂<u>CH₂CH₂</u>), 1.45 (m, 6H, Ar-OCH₂CH₂<u>CH₂CH₂CH₂</u>)

Figure S3. ¹H-NMR spectrum of azo-acrylate

1-(4-(hexyloxy)phenyl)-2-phenyldiazene (Azo-C6)

¹H NMR (400 MHz, DMSO-d6, δ): 7.82 (m, 4H, Ar H), 7.52 (m, 3H, Ar H), 7.08 (m, 2H, Ar H), 4.02 (t, 2H, OCH₂), 1.70 (m, 2H, OCH₂<u>CH₂</u>), 1.40 (m, 2H, OCH₂CH₂<u>CH₂</u>), 1.26 (m, 4H, OCH₂CH₂CH₂<u>CH₂CH₂</u>), 0.84 (m, 3H, OCH₂CH₂CH₂CH₂CH₂<u>CH₂</u>)

Figure S4. ¹H-NMR spectrum of Azo-C6

1-(4-(decyloxy)phenyl)-2-phenyldiazene (Azo-C10)

¹H NMR (400 MHz, DMSO-d6, δ): 7.89 (m, 4H, Ar H), 7.46 (m, 3H, Ar H), 7.00 (m, 2H, Ar H), 4.03 (t, 2H, OCH₂), 1.81 (m, 2H, OCH₂CH₂), 1.47 (m, 2H, OCH₂CH₂CH₂), 1.30 (m, 12H, OCH₂CH₂CH₂(CH₂)₆), 0.88 (m, 3H, OCH₂CH₂CH₂(CH₂)₆CH₃)

Figure S5. ¹H-NMR spectrum of Azo-C10

1-(4-(tetradecyloxy)phenyl)-2-phenyldiazene (Azo-C14)

¹H NMR (400 MHz, Chloroform-d, δ): 7.89 (m, 4H, Ar H), 7.46 (m, 3H, Ar H), 7.00 (m, 2H, Ar H), 4.03 (t, 2H, OCH₂), 1.81 (m, 2H, OCH₂<u>CH₂</u>), 1.47 (m, 2H, OCH₂CH₂<u>CH₂</u>), 1.30 (m, 20H, OCH₂CH₂CH₂CH₂<u>(CH₂)₁₀</u>), 0.88 (m, 3H, OCH₂CH₂CH₂(CH₂)₁₀<u>CH₃</u>)

Figure S6. ¹H-NMR spectrum of Azo-C14

1-(4-(octadecyloxy)phenyl)-2-phenyldiazene (Azo-C18)

¹H NMR (400 MHz, Chloroform-d, δ): 7.89 (m, 4H, Ar H), 7.46 (m, 3H, Ar H), 7.00 (m, 2H, Ar H), 4.03 (t, 2H, OCH₂), 1.82 (m, 2H, OCH₂<u>CH₂</u>), 1.47 (m, 2H, OCH₂<u>CH₂</u>CH₂<u>CH₂</u>), 1.30 (m, 28H, OCH₂CH₂CH₂CH₂<u>(CH₂)₁₄</u>), 0.88 (m, 3H, OCH₂CH₂CH₂(CH₂)₁₄<u>CH₃</u>)

Figure S7. ¹H-NMR spectrum of Azo-C18

Azo-polymer (¹H NMR, 400 MHz, DMSO-d6)

Figure S8. ¹H-NMR spectrum of azo-polymer

- Probe tack

Figure S9. Probe tack forces of the switchable PSAs according to UV intensity, including switching off steps.

- Water contact angle

Figure S10. Images of the water droplet on the switchable PSAs according to UV intensity.