## Supplementary information

# Solution-phase synthesis of oligodeoxyribonucleotides using the *H*-phosphonate method with *N*-unprotected 5'-phosphite monomers

Hiromasa Matsuda,<sup>a,b</sup> Erina Yoshida,<sup>a</sup> Takaaki Shinoda,<sup>a</sup> Kazuki Sato,<sup>a</sup> Rintaro Iwata Hara<sup>a,c</sup> and Takeshi Wada<sup>\*a</sup>

 <sup>a</sup>Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
<sup>b</sup>CMC Production Technology Laboratories, MTPC Production Technology & Supply Chain Management Division, Mitsubishi Tanabe Pharma Corporation, 3-16-89 Kashima, Yodogawa-ku, Osaka 532-8505, Japan
<sup>c</sup>Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan

\*Corresponding author E-mail: twada@rs.tus.ac.jp

## Table of contents

| 1. | <sup>31</sup> P NMR analysis of the synthesis of 5'-phosphite monomers (Table 1)   | <b>S3</b>  |
|----|------------------------------------------------------------------------------------|------------|
| 2. | $^{31}$ P NMR analysis of the condensation of 5'-phosphite monomers with H-        |            |
|    | phosphonate monoesters (Table 2)                                                   | <b>S5</b>  |
| 3. | <sup>31</sup> P NMR spectra of the intermediates in the synthesis of TTT           | <b>S16</b> |
| 4. | RP-HPLC profiles of oligomers                                                      | <b>S19</b> |
| 5. | <sup>1</sup> H, <sup>13</sup> C, <sup>31</sup> P NMR spectra of isolated compounds | <b>S21</b> |
|    |                                                                                    |            |

## 1. <sup>31</sup>P NMR analysis of the synthesis of 5'-phosphite monomers (Table 1)



Table 1, entry 2

Fig. S1 <sup>31</sup>P NMR spectrum (pyridine-*d*<sub>5</sub>, 162 MHz) of the reaction mixture in the phosphitylation of 2'-deoxycytidine.



Fig. S2 <sup>31</sup>P NMR spectrum (pyridine-*d*<sub>5</sub>, 162 MHz) of the reaction mixture in the phosphitylation of thymidine.

## 2. <sup>31</sup>P NMR analysis of the condensation of 5'-phosphite monomers with *H*-phosphonate monoesters (Table 2)

#### Table 2, entry 1







(B) <sup>31</sup>P NMR spectrum of the reaction mixture 1.5 h after extra BOP-Cl (2.0 equiv) was added (the total addition of BOP-Cl: 4.0 equivalents).

![](_page_6_Figure_0.jpeg)

(C) <sup>31</sup>P NMR spectrum of the reaction mixture 1.5 h after extra BOP-Cl (2.0 equiv) was added again (the total addition of BOP-Cl: 6.0 equivalents).

Fig. S3  ${}^{31}$ P NMR spectra (pyridine- $d_5$ , 162 MHz) of the reaction mixtures in the condensation between **2t** and **5a** in pyridine. The mixtures were analyzed (A) 30 min after BOP-Cl (2.0 equiv) was added, (B) 1.5 h after extra BOP-Cl (2.0 equiv) was added, and (C) 1.5 h after extra BOP-Cl (2.0 equiv) was added again.

<sup>a</sup>The peaks were derived from the diastereomeric *H*-phosphonate diester of **6t**.

![](_page_7_Figure_0.jpeg)

Fig. S4  $^{31}$ P NMR spectrum (CD<sub>3</sub>CN, 162 MHz) of the reaction mixture in the condensation between **2t** and **5a** in CH<sub>3</sub>CN solvent with pyridine (10 equiv) 30 min after BOP-Cl (2.0 equiv) was added.

#### Table 2, entry 3

![](_page_8_Figure_1.jpeg)

![](_page_8_Figure_2.jpeg)

![](_page_9_Figure_0.jpeg)

(B) <sup>31</sup>P NMR spectrum of the reaction mixture 5.5 h after BOP-Cl (4.0 equiv) was added.

Fig. S5  ${}^{31}$ P NMR spectra (CD<sub>3</sub>CN, 162 MHz) of the reaction mixtures in the condensation between **2t** and **5a** in CH<sub>3</sub>CN solvent with 2,6-lutidine (10 equiv). The mixtures were analyzed (A) 30 min and (B) 5.5 h after BOP-Cl (4.0 equiv) was added.

![](_page_10_Figure_0.jpeg)

![](_page_10_Figure_1.jpeg)

Fig. S6 <sup>31</sup>P NMR spectrum (CD<sub>3</sub>CN, 162 MHz) of the reaction mixture in the condensation between **2t** and **5a** in CH<sub>3</sub>CN solvent with Et<sub>3</sub>N (10 equiv) 30 min after BOP-Cl (2.0 equiv) was added..

<sup>b</sup>The peaks were derived from the diastereomeric *H*-phosphonate diester of **6t**.

![](_page_11_Figure_0.jpeg)

![](_page_11_Figure_1.jpeg)

Fig. S7  ${}^{31}$ P NMR spectrum (pyridine- $d_5$ , 162 MHz) of the reaction mixture in the condensation between **2t** and **5b** in pyridine 30 min after BOP-Cl (2.0 equiv) was added.

<sup>c</sup>The peaks were derived from the diastereomeric *H*-phosphonate diester of **6t**.

![](_page_12_Figure_0.jpeg)

Fig. S8  ${}^{31}$ P NMR spectrum (pyridine- $d_5$ , 162 MHz) of the reaction mixture in the condensation between **2a** and **5b** in pyridine 30 min after BOP-Cl (2.0 equiv) was added.

<sup>d</sup>The peaks were derived from the diastereomeric *H*-phosphonate diester of **6a**.

![](_page_13_Figure_0.jpeg)

![](_page_13_Figure_1.jpeg)

Fig. S9  ${}^{31}$ P NMR spectrum (pyridine- $d_5$ , 162 MHz) of the reaction mixture in the condensation between **2c** and **5b** in pyridine 30 min after BOP-Cl (2.0 equiv) was added.

<sup>e</sup>The peaks were derived from the diastereomeric *H*-phosphonate diester of **6c**.

![](_page_14_Figure_0.jpeg)

![](_page_14_Figure_1.jpeg)

Fig. S10  ${}^{31}$ P NMR spectrum (pyridine- $d_5$ , 162 MHz) of the reaction mixture in the condensation between **2g** and **5b** in pyridine 30 min after BOP-Cl (2.0 equiv) was added.

<sup>*f*</sup>The peaks were derived from the diastereomeric *H*-phosphonate diester of **6g**.

![](_page_15_Figure_0.jpeg)

## 3. <sup>31</sup>P NMR spectra of the intermediates in the synthesis of TTT

Fig. S11 <sup>31</sup>P NMR spectrum (CDCl<sub>3</sub>, 162 MHz) of crude 6t.

![](_page_16_Figure_0.jpeg)

Fig. S12 <sup>31</sup>P NMR spectrum (CDCl<sub>3</sub>, 162 MHz) of crude 7.

![](_page_17_Figure_0.jpeg)

Fig. S13 <sup>31</sup>P NMR spectrum (CDCl<sub>3</sub>, 162 MHz) of crude 8.

## 4. **RP-HPLC** profiles of oligomers

0

10

![](_page_18_Figure_1.jpeg)

Crude TTT

![](_page_18_Figure_3.jpeg)

20

30

40 min

![](_page_19_Figure_1.jpeg)

**Fig. S15** RP-HPLC profiles of (A) crude d(CGAT) and (B) crude d(GCAT). RP-HPLC was performed with a linear gradient of 0%–24% CH<sub>3</sub>CN in 0.1 M TEAA buffer (pH 7.0) over 48 min at rt at a rate of 1.0 mL/min.

## 5. <sup>1</sup>H, <sup>13</sup>C, <sup>31</sup>P NMR spectra of compounds

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)

![](_page_20_Figure_2.jpeg)

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)

![](_page_21_Figure_1.jpeg)

![](_page_22_Figure_0.jpeg)

![](_page_22_Figure_1.jpeg)

![](_page_23_Figure_0.jpeg)

![](_page_23_Figure_1.jpeg)

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)

![](_page_24_Figure_1.jpeg)

### <sup>31</sup>P NMR (CDCl<sub>3</sub>, 162 MHz)

![](_page_25_Figure_1.jpeg)

![](_page_26_Figure_0.jpeg)

![](_page_26_Figure_1.jpeg)

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)

![](_page_27_Figure_1.jpeg)

![](_page_28_Figure_0.jpeg)

![](_page_28_Figure_1.jpeg)

![](_page_29_Figure_0.jpeg)

![](_page_29_Figure_1.jpeg)

<sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>, 100 MHz)

![](_page_30_Figure_1.jpeg)

<sup>13</sup>C NMR (DMSO-d<sub>6</sub>, 100 MHz) (magnified)

![](_page_31_Figure_1.jpeg)

<sup>31</sup>P NMR (DMSO-*d*<sub>6</sub>, 162 MHz)

![](_page_32_Figure_1.jpeg)

![](_page_33_Figure_0.jpeg)

![](_page_33_Figure_1.jpeg)

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)

![](_page_34_Figure_1.jpeg)

### <sup>31</sup>P NMR (CDCl<sub>3</sub>, 162 MHz)

![](_page_35_Figure_1.jpeg)

![](_page_36_Figure_0.jpeg)

![](_page_36_Figure_1.jpeg)

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)

![](_page_37_Figure_1.jpeg)

### <sup>31</sup>P NMR (CDCl<sub>3</sub>, 162 MHz)

![](_page_38_Figure_1.jpeg)

![](_page_39_Figure_0.jpeg)

![](_page_39_Figure_1.jpeg)

![](_page_40_Figure_0.jpeg)

![](_page_40_Figure_1.jpeg)

![](_page_41_Figure_0.jpeg)

![](_page_41_Figure_1.jpeg)

![](_page_42_Figure_0.jpeg)

![](_page_42_Figure_1.jpeg)

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)

![](_page_43_Figure_1.jpeg)

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)

![](_page_44_Figure_1.jpeg)

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)

![](_page_45_Figure_1.jpeg)

![](_page_46_Figure_0.jpeg)

![](_page_46_Figure_1.jpeg)

![](_page_47_Figure_0.jpeg)

![](_page_47_Figure_1.jpeg)

![](_page_48_Figure_0.jpeg)

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) (magnified)

![](_page_49_Figure_0.jpeg)

![](_page_49_Figure_1.jpeg)

![](_page_50_Figure_0.jpeg)

![](_page_50_Figure_1.jpeg)

![](_page_51_Figure_0.jpeg)

![](_page_51_Figure_1.jpeg)

![](_page_52_Figure_0.jpeg)

![](_page_52_Figure_1.jpeg)

![](_page_53_Figure_0.jpeg)

![](_page_53_Figure_1.jpeg)

![](_page_54_Figure_0.jpeg)

![](_page_54_Figure_1.jpeg)

## <sup>1</sup>H NMR (D<sub>2</sub>O, 600 MHz)

![](_page_55_Figure_1.jpeg)

## <sup>1</sup>H NMR (D<sub>2</sub>O, 600 MHz)

![](_page_56_Figure_1.jpeg)

## <sup>1</sup>H NMR (D<sub>2</sub>O, 600 MHz)

![](_page_57_Figure_1.jpeg)