1

## Supporting Information

## 2 Chloride corrosion behavior on heating pipeline made by AISI 304 and

## 3 316 in reclaimed water

4 Xi Chen,<sup>a</sup> Hongyan Liu, <sup>a</sup> Xiang Sun,<sup>a</sup> Botao Zan<sup>b</sup> and Meisheng Liang \*<sup>a</sup>

5 °College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, China.

6 <sup>b</sup>University of Washington, Seattle, 98105, WA, USA

7

8 07/12/2021, the ESI was first published 02/12/2021.

9 This version of the Electronic Supplementary Information replaces a previous copy in which the author order was

10 incorrect.

## 11 S1. The detailed for electrochemical test

In order to reach a stable state for the experimental system before potentiodynamic polarization tests and EIS measurements, the open circuit potential method was used to monitor the corrosion potential ( $E_{corr}$ ) of each sample for 30 min. Then EIS measurements were initially performed because its weak influence to working electrode, and the date were recorded using  $E_{corr}$  in a frequency range from 10<sup>5</sup> Hz to 10<sup>-2</sup> Hz with a sweeping frequency range of 12 points per decade frequency. After recording, EIS spectra were fitted by Z-view software. Finally, the potentiodynamic polarization tests with potential scan rate of 0.0005 V s<sup>-1</sup> were carried out for analyzing the pitting corrosion susceptibility of working electrode, where the potential value was defined as the pitting potential ( $E_{pit}$ ).



20

21 Fig. S1 Calculated effective capacitance (C<sub>eff</sub>) of AISI 304 and AISI 316 at different chloride concentration.



Fig. S2 Corrosion potential (E<sub>Corr</sub>) as a function of the Cl<sup>-</sup> concentrations for AISI 304 and AISI 316.



Fig. S3 SEM images of AISI 304 (a) and AISI 316 (b) after being corroded in 200 mg/L of Cl<sup>-</sup>.

Table S1  $I_{\text{Corr}}$  and  $E_{\text{Corr}}$  data for AISI 304 and AISI 316 in potentiodynamic polarization test

| Cl <sup>-</sup> /(mg/L)                       | 25  | 50  | 100 | 200 | 400  |
|-----------------------------------------------|-----|-----|-----|-----|------|
| I <sub>Corr</sub> /304(nA • cm <sup>2</sup> ) | -41 | -55 | -60 | -72 | -162 |
| I <sub>Corr</sub> /316(nA • cm <sup>2</sup> ) | -30 | -44 | -49 | -59 | -74  |
| E <sub>Corr</sub> /304(mV)                    | 100 | 298 | 334 | 506 | 926  |
| E <sub>Corr</sub> /316(mV)                    | 60  | 162 | 284 | 395 | 595  |