Theoretical Insight into the Hydroxyl Production via H₂O₂

Decomposition over Fe₃O₄ (311) Surface

Pin-Jun Lin,^a Chen-Hao Yeh,^{b*} and Jyh-Chiang Jiang^{a*}

^aDepartment of Chemical Engineering, National Taiwan University of Science and

Technology, No.43, Keelung Rd., Sec.4, Da'an Dist., Taipei 10607, Taiwan.

^bDepartment of Materials Science and Engineering, Feng Chia University, No. 100,

Wenhwa Rd., Seatwen, Taichung, 40724, Taiwan

*Corresponding author. E-mail: jcjiang@mail.ntust.edu.tw (J.-C. Jiang)

*Corresponding author. E-mail: <u>chenhyeh@fcu.edu.tw</u> (C.-H. Yeh)

Elementary steps	E _a	ΔΕ
Molecular adsorption		
$H_2O_{2(aq)} \rightarrow H_2O_2^*$	-	-0.94
$H_2O_2^* \rightarrow 2OH^*$	0.52	-1.53
$\mathrm{H_2O_2}^{*} \rightarrow \mathrm{H}^{*} + \mathrm{OOH}^{*}$	0.33	0.18
Dissociate adsorption		
$H_2O_{2(ag)} \rightarrow H^* + OOH^*$	-	-1.49
$H^* + OOH^* \rightarrow 2OH^*$	0.15	-2.16
$H^* + OOH^* \rightarrow OO^* + 2H^*$	0.49	-0.06

Table S1. Calculated reaction barriers (Ea in eV) and reaction energies (Δ E in eV) for elementary reactions of H₂O₂ decomposition on the Fe₃O₄ (311) surface in aqueous solution.

Figure S1. (a) Bulk structure of Fe_3O_4 ; (b) Top view (left) and side view (right) of Fe_3O_4 (311) surface; (c) Simulated X-ray diffraction pattern (XRD) of Fe_3O_4 bulk structure. Purple and red spheres represent Fe and O atoms, respectively.

Figure S2. Optimized geometries of the intermediates and transition states during the decomposition of H_2O_2 molecular adsorption along (a) O-O bond and (b) O-H bond dissociation pathways. Purple, red, and white spheres represent Fe, O, and H atoms, respectively. The deep red color represents the oxygen of H_2O_2 while the light red color is the oxygen of Fe₃O₄ (311) surface.

Figure S3. Optimized geometries of the intermediates and transition states during the decomposition of H_2O_2 dissociative adsorption along (a) O-O bond and (b) O-H bond dissociation pathways. Purple, red, and white spheres represent Fe, O, and H atoms, respectively. The deep red color represents the oxygen of H_2O_2 while the light red color is the oxygen of Fe₃O₄ (311) surface.

Figure S4. The potential energy profiles of the decomposition of H_2O_2 on the Fe₃O₄(311) surface in aqueous solution via (a) H_2O_2 molecular adsorption and (b) H_2O_2 dissociative adsorption.

Figure S5. The PDOS plots of (a) d orbitals of Fe_{tet} atom and (b) Fe_{oct} atom before and after H_2O_2 molecular adsorption; and the PDOS plots of (c) d orbitals of Fe_{oct1} atom and (b) Fe_{oct2} atom before and after H_2O_2 dissociative adsorption. The dotted line is the fermi level.

Figure S6. The electron density difference (EDD) plots for the OH groups on (a) Fe_{tet} and (b) Fe_{oct} atoms after the decomposition of H_2O_2 molecular adsorption; the EDD plots for the OH groups on (c) Fe_{oct1} and (d) Fe_{oct2} atoms after the decomposition of H_2O_2 dissociative adsorption. The isosurface level is 0.002 |e|/Bohr³. (Red and blue lines represent electron gain and lose, respectively.) Brown, red, and white spheres represent Fe, O, and H atoms, respectively.

Figure S7. The PDOS plots of (a) d orbitals of Fe_{tet} atom and (b) Fe_{oct} atom before and after H_2O_2 molecular adsorption's decomposition; and the PDOS plots of (c) d orbitals of Fe_{oct1} atom and (b) Fe_{oct2} atom before and after H_2O_2 dissociative adsorption's decomposition. The dotted line is the fermi level.