Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

# **Supplementary Information**

Copper-Mediated Construction of Benzothieno[3,2-*b*]benzofurans by Intramolecular Dehydrogenative C–O Coupling Reaction Liankun Ai, Ibrahim Yusuf Ajibola and Baolin Li\*

School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China

# **Table of Contents**

| 1. | General Information                                                           | 2  |
|----|-------------------------------------------------------------------------------|----|
| 2. | General procedures for the 2-(benzo-[b]thiophen-2-yl)phenol derivatives       | 2  |
| 3. | General procedure for copper-catalyzed construction of benzothienobenzofurans | 8  |
| 4. | Kinetic isotope effect study                                                  | 14 |
| 5. | Gram scale synthesis.                                                         | 16 |
| 6. | References                                                                    | 16 |
| 7. | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra                            | 18 |

#### 1. General Information

Chemicals were purchased from commercial suppliers such as Alfa Aesar, Aladdin, Heowns, Innochem, Meryer or Bidepharm, and used without further purification unless otherwise noted. Anhydrous toluene was obtained by distillation over CaH<sub>2</sub>. Anhydrous dimethyl sulfoxide was refluxed for 4 h over CaH<sub>2</sub>, and then fractionally distilled at low pressure.

Thin-layer chromatography was done using TLC silica gel GF254 glass plates and was visualized with a UV lamp at 254 nm and 365 nm. Silica gel (200-300 mesh) was used for flash column chromatography.

Proton and carbon nuclear magnetic resonance (<sup>1</sup>H NMR and <sup>13</sup>C NMR) spectra were measured on JEOL 400YH spectrometer at ambient temperature. Chemical shifts ( $\delta$ ) are reported in parts per million (ppm) downfield of tetramethylsilane (TMS,  $\delta = 0$ ), and the residual solvent peaks were used as internal references, for <sup>1</sup>H NMR: CDCl<sub>3</sub> = 7.26 ppm; for <sup>13</sup>C NMR: CDCl<sub>3</sub> = 77.16 ppm. The order of citation in parentheses is: a) multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, td = triplet of doublets, dt = doublet of triplets, ddd = doublet of doublet of doublets, m = multiplet), b) coupling constants, c) number of protons. Coupling constants (*J*) are reported in Hertz (Hz). The high-resolution mass spectra (HRMS) were conducted on Thermoscientific Q Exactive Focus (ESI).

#### 2. General procedures for the 2-(benzo-[b]thiophen-2-yl)phenol derivatives



To a 25 mL Schlenk tube with a stirring bar, 2-bromobenzo[*b*]thiophene derivatives **3** (1 mmol, 1 equiv), 2-hydroxyphenylboronic acid derivatives **4** (1.5 mmol, 1.5 equiv),  $K_2CO_3$  (2 mmol, 2 equiv) and Pd(PPh<sub>3</sub>)<sub>4</sub> (0.05 mmol, 5 mol %) were added. The tube was evacuated and refilled with nitrogen three times. 1,4-Dioxane/H<sub>2</sub>O (4 mL, v:v = 3:1) was added in a stream of nitrogen atmosphere. The tube was sealed and bubbled with nitrogen for 15 minutes to remove oxygen. The reaction was heated to 90 °C overnight. After being allowed to cool to room temperature, 1 M HCl (2 mL) was added to acidify the solution. By extraction with CH<sub>2</sub>Cl<sub>2</sub>, the organic layer was separated and dried with Na<sub>2</sub>SO<sub>4</sub>. After evaporation under a vacuum, the residue was purified on silica gel column chromatography with petroleum ether (PE)/ethyl acetate (EA) (v:v = 10:1) as the eluent to afford the corresponding compounds **1**.

HO

**2-(benzo[b]thiophen-2-yl)phenol (1a)**<sup>1-2</sup>: Following the general procedure, the target product was obtained after purification by column chromatography (PE/EA = 10:1) as a white solid (194.6 mg, 0.861 mmol, 86% yield).

<sup>1</sup>H NMR (400 MHz, chloroform-*d*)  $\delta$  7.86 (dd, J = 7.3, 2.3 Hz, 1H), 7.80 (dd, J = 7.3, 2.3 Hz, 1H), 7.55 (s, 1H), 7.51 (dd, J = 7.5, 2.1 Hz, 1H), 7.43 – 7.32 (m, 2H), 7.27 (td, J = 7.8, 2.3 Hz, 1H), 7.00 (t, J = 7.3 Hz, 1H), 6.99 (d, J = 7.8 Hz, 1H), 5.66 (s, 1H). <sup>13</sup>C NMR (100 MHz, chloroform-*d*)  $\delta$  152.85, 140.42, 140.01, 139.33, 130.43, 130.03, 124.75, 124.67, 123.81, 122.95, 122.27, 121.17, 121.01, 116.44. HRMS (ESI<sup>-</sup>) m/z: [M–H]<sup>-</sup> calcd for C<sub>14</sub>H<sub>10</sub>OS 225.0380, found 225.0368.



**2-(benzo[***b***]thiophen-2-yl)-4-methylphenol (1b):** Following the general procedure, the target product was obtained after purification by column chromatography (PE/EA = 10:1) as a white solid (232.8 mg, 0.970 mmol, 97% yield).

<sup>1</sup>H NMR (400 MHz, chloroform-*d*)  $\delta$  7.96 – 7.91 (m, 1H), 7.67 – 7.62 (m, 1H), 7.47 (s, 1H), 7.44 – 7.36 (m, 2H), 7.13 (d, *J* = 7.8 Hz, 1H), 7.13 (s, 1H), 6.95 (d, *J* = 7.8 Hz, 1H), 4.91 (s, 1H), 2.33 (s, 3H). <sup>13</sup>C NMR (101 MHz, chloroform-*d*)  $\delta$  151.21, 140.68, 138.19, 132.59, 131.26, 130.38, 129.95, 125.54, 125.04, 124.76, 123.28, 123.03, 121.43, 115.77, 20.62. HRMS (ESI<sup>-</sup>) m/z: [M–H]<sup>-</sup> calcd for C<sub>15</sub>H<sub>12</sub>OS 239.0536, found 239.0531.



**2-(benzo[b]thiophen-2-yl)-5-(tert-butyl)phenol (1c):** Following the general procedure, the target product was obtained after purification by column chromatography (PE/EA = 10:1) as a white solid (276.4 mg, 0.979 mmol, 98% yield).

<sup>1</sup>H NMR (400 MHz, chloroform-*d*)  $\delta$  7.95 (dd, J = 7.7, 1.4 Hz, 1H), 7.70 (dd, J = 7.6, 1.8 Hz, 1H), 7.48 (s, 1H), 7.4 – 7.36 (m, 2H), 7.27 (d, J = 8.0 Hz, 1H), 7.11 (s, 1H), 7.08 (d, J = 8.0 Hz, 1H), 5.07 (s, 1H), 1.37 (s, 9H). <sup>13</sup>C NMR (101 MHz, chloroform-*d*)  $\delta$  153.56, 153.06, 140.70, 138.30, 132.45, 130.42, 125.42, 125.03, 124.71, 123.37, 123.02, 118.70, 117.91, 113.11, 34.87, 31.41. HRMS (ESI<sup>-</sup>) m/z: [M–H]<sup>-</sup> calcd for C<sub>18</sub>H<sub>18</sub>OS 281.1005, found 281.0999.



**2-(benzo[b]thiophen-2-yl)-4-hexylphenol (1d):** Following the general procedure, the target product was obtained after purification by column chromatography (PE/EA = 20:1) as a white solid (232.5 mg, 0.750 mmol, 75% yield).

<sup>1</sup>H NMR (400 MHz, chloroform-*d*) δ 7.97 – 7.91 (m, 1H), 7.69 – 7.63 (m, 1H), 7.49 (s, 1H), 7.44 – 7.37 (m, 2H), 7.14 (d, J = 8.0 Hz, 1H), 7.13 (s, 1H), 6.97 (d, J = 8.0 Hz, 1H), 4.98 (s, 1H), 2.59 (t, J = 7.6 Hz, 2H), 1.65 – 1.57 (m, 2H), 1.34 – 1.26 (m, 6H), 0.88 (t, J = 6.9 Hz, 3H). <sup>13</sup>C NMR (101 MHz, chloroform-*d*) δ 151.31, 140.70, 138.25, 135.19, 132.67, 130.63, 129.73, 125.50, 125.04, 124.76, 123.31, 123.04, 121.32, 115.73, 35.18, 31.86, 29.11, 24.94, 22.78, 14.27. HRMS (ESI<sup>-</sup>) m/z: [M–H]<sup>-</sup> calcd for C<sub>20</sub>H<sub>22</sub>OS 309.1317, found 309.1314.



**2-(benzo[***b***]thiophen-2-yl)-4-methoxyphenol (1e):** Following the general procedure, the target product was obtained after purification by column chromatography (PE/EA = 20:1) as a white solid (250.9 mg, 0.980 mmol, 98% yield).

<sup>1</sup>H NMR (400 MHz, chloroform-*d*) δ 7.97 – 7.92 (m, 1H), 7.70 – 7.65 (m, 1H), 7.50 (s, 1H), 7.46 – 7.35 (m, 2H), 6.99 (d, J = 8.7 Hz, 1H), 6.94 – 6.85 (m, 2H), 5.29 (s, 1H), 3.79 (s, 3H). <sup>13</sup>C NMR (101 MHz, chloroform-*d*) δ 153.51, 147.43, 140.66, 138.05, 132.45, 125.75, 125.09, 124.83, 123.24, 123.04, 122.19, 116.71, 115.68, 115.49, 55.95. HRMS (ESI<sup>-</sup>) m/z: [M–H]<sup>-</sup> calcd for C<sub>15</sub>H<sub>12</sub>O<sub>2</sub>S 255.0485, found 255.0483.



**2-(benzo[***b***]thiophen-2-yl)-4-fluorophenol (1f):** Following the general procedure, the target product was obtained after purification by column chromatography (PE/EA = 10:1) as a faint yellow solid (236.7 mg, 0.969 mmol, 97% yield).

<sup>1</sup>H NMR (400 MHz, chloroform-*d*)  $\delta$  7.87 (d, *J* = 7.4 Hz, 1H), 7.82 (d, *J* = 7.6 Hz, 1H), 7.58 (s, 1H), 7.46 – 7.32 (m, 2H), 7.23 (dd, *J* = 9.0, 2.9 Hz, 1H), 7.05 – 6.88 (m, 2H), 5.51 (s, 1H). <sup>13</sup>C NMR (101 MHz, chloroform-*d*)  $\delta$  156.86 (d, <sup>1</sup>*J*<sub>C-F</sub> = 238.9 Hz), 149.53 (d, <sup>4</sup>*J*<sub>C-F</sub> = 1.9 Hz), 140.70, 137.72, 131.30, 126.24, 125.28, 125.00, 123.12, 122.99, 122.52 (d, <sup>3</sup> *J*<sub>C-F</sub> = 8.7 Hz), 116.99 (d, <sup>2</sup>*J*<sub>C-F</sub> = 23.7 Hz), 116.88 (d, <sup>3</sup>*J*<sub>C-F</sub> = 8.2 Hz), 116.31 (d, <sup>2</sup>*J*<sub>C-F</sub> = 22.6 Hz). HRMS (ESI<sup>-</sup>) m/z: [M–H]<sup>-</sup> calcd for C<sub>14</sub>H<sub>9</sub>FOS 243.0285, found 243.0282.



**2-(benzo[b]thiophen-2-yl)-5-fluorophenol (1g):** Following the general procedure, the target product was obtained after purification by column chromatography (PE/EA = 10:1) as a colorless oil (239.1 mg, 0.979 mmol, 98% yield).

<sup>1</sup>H NMR (400 MHz, chloroform-*d*)  $\delta$  7.95 (ddd, *J* = 7.0, 2.1, 0.6 Hz, 1H), 7.60 (dd, *J* = 7.7, 1.6, 0.8 Hz, 1H), 7.49 (s, 1H), 7.47 – 7.37 (m, 2H), 7.27 (dd, *J* = 8.5, 6.5 Hz, 1H), 7.03 – 6.54 (m, 2H), 5.24 (s, 1H). <sup>13</sup>C NMR (101 MHz, chloroform-*d*)  $\delta$  163.47 (d, <sup>1</sup>*J*<sub>C-F</sub> = 246.6 Hz), 154.60 (d, <sup>3</sup>*J*<sub>C-F</sub> = 12.0 Hz), 140.54, 137.98, 131.64 (d, <sup>3</sup>*J*<sub>C-F</sub> = 10.1 Hz), 131.23, 125.83, 125.06, 124.76, 122.95, 122.85, 117.57 (d, <sup>4</sup>*J*<sub>C-F</sub> = 3.4 Hz), 107.72 (d, <sup>2</sup>*J*<sub>C-F</sub> = 21.7 Hz), 103.41 (d, <sup>2</sup>*J*<sub>C-F</sub> = 25.0 Hz). HRMS (ESI<sup>-</sup>) m/z: [M–H]<sup>-</sup> calcd for C<sub>14</sub>H<sub>9</sub>FOS 243.0285, found 243.0280.



**2-(benzo[b]thiophen-2-yl)-6-fluorophenol (1h):** Following the general procedure, the target product was obtained after purification by column chromatography (PE/EA = 10:1) as a colorless oil (239.1 mg, 0.979 mmol, 98% yield).

<sup>1</sup>H NMR (400 MHz, chloroform-*d*)  $\delta$  7.97 – 7.92 (m, 1H), 7.71 – 7.66 (m, 1H), 7.53 (s, 1H), 7.46 – 7.33 (m, 2H), 7.21 – 7.09 (m, 2H), 7.01 – 6.88 (m, 1H), 5.22 (s, 1H). <sup>13</sup>C NMR (101 MHz, chloroform-*d*)  $\delta$  151.41 (d, <sup>1</sup>*J*<sub>C-F</sub> = 239.9 Hz), 141.60 (d, <sup>2</sup>*J*<sub>C-F</sub> = 13.5 Hz), 140.23, 137.95, 131.60 (d, <sup>3</sup>*J*<sub>C-F</sub> = 3.3 Hz), 126.24 (d, <sup>4</sup>*J*<sub>C-F</sub> = 3.9 Hz), 125.71, 124.69, 124.44, 124.36 (d, <sup>4</sup>*J*<sub>C-F</sub> = 1.9 Hz, this carbon might be the C-2 of benzothiophene, it is splitted by fluorine), 123.15, 122.83, 120.19 (d, <sup>3</sup>*J*<sub>C-F</sub> = 7.7 Hz), 115.34 (d, <sup>2</sup>*J*<sub>C-F</sub> = 18.8 Hz). HRMS (ESI<sup>-</sup>) m/z: [M–H]<sup>-</sup> calcd for C<sub>14</sub>H<sub>9</sub>FOS 243.0285, found 243.0278.



**2-(benzo[b]thiophen-2-yl)-4,5-difluorophenol (1i):** Following the general procedure, the target product was obtained after purification by column chromatography (PE/EA = 10:1) as a colorless oil (254.1 mg, 0.969 mmol, 97% yield).

<sup>1</sup>H NMR (400 MHz, chloroform-*d*)  $\delta$  7.98 – 7.92 (m, 1H), 7.63 – 7.57 (m, 1H), 7.50 (s, 1H), 7.47 – 7.38 (m, 2H), 7.14 (dd, *J* = 10.5, 8.7 Hz, 1H), 6.88 (dd, *J* = 11.4, 7.0 Hz, 1H), 5.15 (s, 1H). <sup>13</sup>C NMR (101 MHz, chloroform-*d*)  $\delta$  150.49 (dd, *J*<sub>C-F</sub> = 248.8, 13.7 Hz), 149.74 (dd, *J*<sub>C-F</sub> = 9.6, 1.9 Hz), 144.61 (dd, *J*<sub>C-F</sub> = 241.1, 12.8 Hz), 140.55, 137.58, 130.26, 126.37, 125.24, 124.96, 123.04, 122.65, 118.39 (d, *J*<sub>C-F</sub> = 18.3 Hz), 117.18 (dd, *J*<sub>C-F</sub> = 5.8, 3.8 Hz), 105.19 (d, *J*<sub>C-F</sub> = 20.7 Hz). HRMS (ESI<sup>-</sup>) m/z: [M–H]<sup>-</sup> calcd for C<sub>14</sub>H<sub>8</sub>F<sub>2</sub>OS 261.0191, found 261.0187.



**2-(benzo[***b***]thiophen-2-yl)-5-chlorophenol (1j):** Following the general procedure, the target product was obtained after purification by column chromatography (PE/EA = 10:1) as a colorless oil (215.8 mg, 0.828 mmol, 83% yield).

<sup>1</sup>H NMR (400 MHz, chloroform-*d*)  $\delta$  7.96 (ddd, J = 7.1, 2.3, 0.8 Hz, 1H), 7.61 (ddd, J = 7.1, 2.4, 0.6 Hz, 1H), 7.50 (s, 1H), 7.48 – 7.37 (m, 2H), 7.25 (d, J = 8.4 Hz, 1H), 7.09 (d, J = 2.1 Hz, 1H), 7.03 (dd, J = 8.1, 2.1 Hz, 1H), 5.19 (s, 1H). <sup>13</sup>C NMR (101 MHz, chloroform-*d*)  $\delta$  154.00, 140.60, 137.77, 134.91, 131.52, 131.01, 125.94, 125.14, 124.84, 123.00, 122.83, 120.96, 120.16, 116.28. HRMS (ESI<sup>-</sup>) m/z: [M–H]<sup>-</sup> calcd for C<sub>14</sub>H<sub>9</sub>CIOS 258.9990, found 258.9986.



**2-(benzo[***b***]thiophen-2-yl)-6-chlorophenol (1k):** Following the general procedure, the target product was obtained after purification by column chromatography (PE/EA = 10:1) as a white solid (239.0 mg, 0.917 mmol, 92% yield).

<sup>1</sup>H NMR (400 MHz, chloroform-*d*)  $\delta$  7.95 – 7.91 (m, 1H), 7.73 – 7.62 (m, 1H), 7.51 (s, 1H), 7.43 – 7.36 (m, 3H), 7.30 (dd, *J* = 7.7, 1.6 Hz, 1H), 6.98 (t, *J* = 7.8 Hz, 1H), 5.67 (s, 1H). <sup>13</sup>C NMR (101 MHz, chloroform-*d*)  $\delta$  149.15, 140.11, 137.99, 132.22, 129.89, 128.97, 125.65, 124.61, 124.35, 123.59, 123.18, 122.81, 120.95, 120.70. HRMS (ESI<sup>-</sup>) m/z: [M–H]<sup>-</sup> calcd for C<sub>14</sub>H<sub>2</sub>ClOS 258.9990, found 258.9987.



**2-(5-chlorobenzo**[*b*]**thiophen-2-yl)phenol (11):** Following the general procedure, the target product was obtained after purification by column chromatography (PE/EA = 10:1) as a white solid (226.2 mg, 0.868 mmol, 87% yield).

<sup>1</sup>H NMR (400 MHz, chloroform-*d*)  $\delta$  7.85 (dd, J = 8.6, 0.7 Hz, 1H), 7.62 (dd, J = 2.0, 0.6 Hz, 1H), 7.55 (s, 1Hz), 7.42 – 7.33 (m, 2H), 7.31 – 7.29 (m, 1H), 7.06 (d, J = 7.8 Hz, 1H), 7.05 (s, 1H), 5.08 (s, 1H). <sup>13</sup>C NMR (101 MHz, chloroform-*d*)  $\delta$  153.23, 139.49, 138.59, 131.88, 131.16, 130.80, 129.96, 127.28, 125.45, 123.84, 122.80, 120.98, 120.83, 116.01. HRMS (ESI<sup>-</sup>) m/z: [M–H]<sup>-</sup> calcd for C<sub>14</sub>H<sub>9</sub>CIOS 258.9990, found 258.9986.



**2-(5-(tert-butyl)benzo[***b***]thiophen-2-yl)phenol (1m):** Following the general procedure, the target product was obtained after purification by column chromatography (PE/EA = 10:1) as a white solid (253.8 mg, 0.899 mmol, 90% yield).

<sup>1</sup>H NMR (400 MHz, chloroform-*d*)  $\delta$  7.87 (dd, J = 8.6, 0.6 Hz, 1H), 7.62 (s, 1H), 7.51 (dd, J = 8.6, 1.9 Hz, 1H), 7.47 (s, 1H), 7.40 – 7.31 (m, 2H), 7.13 – 7.01 (m, 2H), 5.13 (s, 1H), 1.35 (s, 9H). <sup>13</sup>C NMR (101 MHz, chloroform-*d*)  $\delta$  153.38, 148.20, 137.93, 137.89, 132.29, 130.72, 129.63, 125.70, 123.43, 122.45, 121.72, 120.63, 119.00, 115.88, 34.81, 31.54. HRMS (ESI<sup>-</sup>) m/z: [M–H]<sup>-</sup> calcd for C<sub>18</sub>H<sub>18</sub>OS 281.1005, found 281.1000.



**3-(benzo[b]thiophen-2-yl)naphthalen-2-ol (1n):** Following the general procedure, the target product was obtained after purification by column chromatography (PE/EA = 10:1) as a brownish red solid (270.9 mg, 0.980 mmol, 98% yield).

<sup>1</sup>H NMR (400 MHz, chloroform-*d*)  $\delta$  7.98 (dd, J = 8.2, 1.1 Hz, 1H), 7.85 (s, 1H), 7.79 (t, J = 7.4 Hz, 2H), 7.69 (d, J = 7.4 Hz, 1H), 7.60 (s, 1H), 7.52 – 7.32 (m, 5H), 5.21 (s, 1H). <sup>13</sup>C NMR (101 MHz, chloroform-*d*)  $\delta$  151.49, 140.68, 138.39, 134.74, 132.20, 130.49, 128.82, 127.87, 126.89, 126.54, 126.16, 125.17, 124.91, 124.12, 124.11, 123.29, 123.08, 110.45. HRMS (ESI<sup>-</sup>) m/z: [M–H]<sup>-</sup> calcd for C<sub>18</sub>H<sub>12</sub>OS 275.0536, found 275.0534.



**2-(thiophen-2-yl)phenol (10)**<sup>3-4</sup>: Following the general procedure, the target product was obtained after purification by column chromatography (PE/EA = 10:1) as a light yellow oil (172.3 mg, 0.978 mmol, 98% yield).

<sup>1</sup>H NMR (400 MHz, chloroform-*d*)  $\delta$  7.42 (dd, J = 7.7, 1.6 Hz, 1H), 7.40 (dd, J = 5.3, 1.2 Hz, 1H), 7.30 (dd, J = 3.5, 1.2 Hz, 1H), 7.24 (ddd, J = 8.0, 7.7, 1.5 Hz, 1H), 7.15 (dd, J = 5.0, 3.4 Hz, 1H), 6.99 – 6.94 (m, 2H), 5.55 (s, 1H). <sup>13</sup>C NMR (101 MHz, chloroform-*d*)  $\delta$  152.39, 138.71, 130.02, 129.30, 127.75, 126.19, 125.95, 120.93, 120.85, 116.05. HRMS (ESI<sup>-</sup>) m/z: [M–H]<sup>-</sup> calcd for C<sub>10</sub>H<sub>8</sub>OS 175.0223, found 175.0211.



**2-(thieno[3,2-***b***]thiophen-2-yl)phenol (1p):** Following the general procedure, the target product was obtained after purification by column chromatography (PE/EA = 10:1) as a yellow solid (213.4 mg, 0.919 mmol, 92% yield).

<sup>1</sup>H NMR (400 MHz, chloroform-*d*)  $\delta$  7.52 (d, *J* = 0.8 Hz, 1H), 7.47 (dd, *J* = 7.6, 2 Hz, 1H), 7.40 (d, *J* = 5.3 Hz, 1H), 7.29 (dd, *J* = 5.2, 0.7 Hz, 1H), 7.24 (td, *J* = 7.8, 1.6 Hz, 1H), 7.00 (td, *J* = 7.4, 0.8 Hz, 2H), 5.62 (s, 1H). <sup>13</sup>C NMR (101 MHz, chloroform-*d*)  $\delta$ 152.53, 140.68, 139.74, 139.39, 129.95, 129.57, 127.20, 121.33, 121.00, 119.47, 118.58, 116.23, 77.32, 77.00, 76.68. HRMS (ESI<sup>-</sup>) m/z: [M–H]<sup>-</sup> calcd for C<sub>12</sub>H<sub>8</sub>OS<sub>2</sub> 230.9943, found 230.9936.



**2,2'-(thieno[3,2-***b***]thiophene-2,5-diyl)bis(4-(***tert***-butyl)phenol) (1q): Following the general procedure, the target product was obtained after purification by column chromatography (PE/EA = 4:1) as a yellow solid (375.0 mg, 0.863 mmol, 86% yield).** 

<sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) δ 10.11 (s, 2H), 7.78 (s, 2H), 7.51 (d, J = 8.3 Hz, 2H), 6.92 (d, J = 2.1 Hz, 2H), 6.86 (dd, J = 8.3, 2.0 Hz, 2H), 1.21 (s, 18H). <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>) δ 153.72, 151.91, 141.68, 138.98, 127.72, 118.77, 117.33, 117.23, 113.72, 34.76, 31.49. HRMS (ESI<sup>-</sup>) m/z: [M–H]<sup>-</sup> calcd for C<sub>26</sub>H<sub>28</sub>O<sub>2</sub>S<sub>2</sub> 435.1457, found 435.1452.

# **3.** General procedure for copper-catalyzed construction of benzothienobenzofurans



Into a 25 mL Schlenk tube with a stirring bar, substrates 1 (0.2 mmol), Cu(OAc)<sub>2</sub> (0.6 mmol, 3 equiv) and Cs<sub>2</sub>CO<sub>3</sub> (0.2 mmol, 1 equiv) were sequentially added. The tube was evacuated and refilled with argon three times. Pyridine (water  $\leq$  50 ppm) (4 mL) was added in a stream of argon atmosphere. The tube was sealed and it was bubbled with nitrogen for 15 minutes to remove oxygen. The reaction was heated to 110 °C under nitrogen atmosphere for 12 h. After being cooled to room temperature, 1M HCl (15 mL) was added to acidify the solution. By extraction with CH<sub>2</sub>Cl<sub>2</sub> (4 × 10 mL), the organic layer was separated and dried with Na<sub>2</sub>SO<sub>4</sub>. After evaporation under a vacuum, the residue was purified on silica gel column chromatography with hexane as the eluent to afford the target compounds **2**.



**benzo**[4,5]**thieno**[3,2-*b*]**benzofuran** (2a)<sup>5-9</sup>: Following the general procedure, the target product was obtained after purification by column chromatography (PE) as a white solid (38.4 mg, 0.171 mmol, 86% yield).

<sup>1</sup>H NMR (400 MHz, chloroform-*d*)  $\delta$  8.02 (d, *J* = 8.1 Hz, 1H), 7.89 (d, *J* = 8.1 Hz, 1H), 7.74 (d, *J* = 8.0 Hz, 1H), 7.66 (d, *J* = 8.0 Hz, 1H), 7.53 – 7.46 (m, 1H), 7.42 – 7.32 (m, 3 H). <sup>13</sup>C NMR (101 MHz, chloroform-*d*)  $\delta$  158.90, 153.12, 142.11, 125.25, 125.07, 125.04 (one carbon was overlapped), 124.49, 124.17, 123.43, 119.82, 119.72, 118.70, 112.69. HRMS (ESI<sup>+</sup>) m/z: [M]<sup>+</sup> calcd for C<sub>14</sub>H<sub>8</sub>OS 224.0290, found 224.0289.



**8-methylbenzo[4,5]thieno[3,2-***b***]benzofuran (2b)<sup>10</sup>:** Following the general procedure, the target product was obtained after purification by column chromatography (PE) as a white solid (42.8 mg, 0.180 mmol, 90% yield).

<sup>1</sup>H NMR (400 MHz, chloroform-*d*)  $\delta$  8.05 (ddd, J = 7.9, 1.4, 0.8 Hz, 1H), 7.83 (ddd, J = 8.1, 1.1, 0.8 Hz, 1H), 7.72 – 7.71 (m, 1H), 7.50 (ddd, J = 7.6, 7.3, 1.2 Hz, 1H), 7.48 (d, J = 8.5 Hz, 1H), 7.37 – 7.33 (m, 1H), 7.15 (ddd, J = 8.5, 1.9, 0.7 Hz, 1H), 2.54 (s, 3H). <sup>13</sup>C NMR (101 MHz, chloroform-*d*)  $\delta$  159.26, 159.20, 138.35, 133.21, 130.67, 125.42, 124.69, 124.06 (one carbon was overlapped), 123.72, 121.50, 119.83, 119.31, 111.51, 21.60. HRMS (ESI<sup>+</sup>) m/z: [M]<sup>+</sup> calcd for C<sub>15</sub>H<sub>10</sub>OS 238.0447, found 238.0442.



7-(tert-butyl)benzo[4,5]thieno[3,2-b]benzofuran (2c): Following the general procedure, the target product was obtained after purification by column chromatography (PE) as a white solid (51.0 mg, 0.182 mmol, 91% yield).

<sup>1</sup>H NMR (400 MHz, chloroform-*d*)  $\delta$  8.04 (ddd, J = 7.9, 1.4, 0.7 Hz, 1H), 7.83 (dd, J = 8.2, 0.7 Hz, 1H), 7.82 (ddd, J = 8.2, 1.0, 0.8 Hz, 1H), 7.64 (dd, J = 1.7, 0.6 Hz, 1H), 7.50 (ddd, J = 7.8, 7.6, 1.2 Hz, 1H), 7.45 (dd, J = 8.2, 1.7 Hz, 1H), 7.34 (ddd, J = 7.6, 7.3, 1.2 Hz, 1H), 1.42 (s, 9H). <sup>13</sup>C NMR (101 MHz, chloroform-*d*)  $\delta$  161.13, 158.68, 147.60, 138.22, 130.54, 125.26, 123.93, 123.53, 121.37, 121.32, 121.05, 119.75, 118.31, 108.85, 35.02, 31.67. HRMS (ESI<sup>+</sup>) m/z: [M]<sup>+</sup> calcd for C<sub>18</sub>H<sub>16</sub>OS 280.0916, found 280.0903.



**8-hexylbenzo[4,5]thieno[3,2-b]benzofuran (2d):** Following the general procedure, the target product was obtained after purification by column chromatography (PE) as a white solid (55.4 mg, 0.18 mmol, 90% yield).

<sup>1</sup>H NMR (400 MHz, chloroform-*d*)  $\delta$  8.07 (ddd, J = 7.9, 1.2, 0.7 Hz, 1H ), 7.83 (dt, J = 8.1, 0.8 Hz, 1H), 7.71 (dd, J = 1.9, 0.6 Hz, 1H), 7.51 (td, J = 7.2, 1.0 Hz, 1H ), 7.50 (d, J = 8.5 Hz, 1H ), 7.35 (ddd, J = 8.1, 7.3, 1.2 Hz, 1H ), 7.15 (dd, J = 8.5, 1.9 Hz, 1H), 2.78 (t, J = 7.8 Hz, 2H), 1.79 – 1.64 (m, 2H), 1.44 – 1.25 (m, 6H), 0.89 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, chloroform-*d*)  $\delta$  159.16, 159.09, 138.35, 138.19, 130.54, 125.25, 124.01, 123.92, 123.89, 123.57, 121.40, 119.78, 118.54, 111.41, 36.03, 32.19, 31.76, 29.01, 22.63, 14.14. HRMS (ESI<sup>+</sup>) m/z: [M]<sup>+</sup> calcd for C<sub>20</sub>H<sub>20</sub>OS 308.1240, found 308.1219.



**8-methoxybenzo[4,5]thieno[3,2-b]benzofuran (2e):** Following the general procedure, the target product was obtained after purification by column chromatography (PE) as a white solid (32.5 mg, 0.128 mmol, 64% yield).

<sup>1</sup>H NMR (400 MHz, chloroform-*d*)  $\delta$  8.04 (ddd, *J* = 7.9, 1.3, 0.6 Hz, 1H), 7.83 (ddd, *J* = 8.1, 1.1, 0.7 Hz, 1H), 7.58 – 7.46 (m, 2H), 7.39 (d, *J* = 2.7 Hz, 1H), 7.36 (td, *J* = 8.0, 1.3 Hz, 1H), 6.92 (dd, *J* = 9.0, 2.7 Hz, 1H), 3.95(s, 3 H). <sup>13</sup>C NMR (101 MHz, chloroform-*d*)  $\delta$  159.77, 156.33, 155.47, 138.09, 130.40, 125.30, 124.44, 123.93, 123.64, 121.24, 119.89, 112.18, 110.94, 102.75, 55.99. HRMS (ESI<sup>+</sup>) m/z: [M]<sup>+</sup> calcd for C<sub>15</sub>H<sub>10</sub>O<sub>2</sub>S 254.0396, found 254.0390.



**8-fluorobenzo[4,5]thieno[3,2-b]benzofuran (2f):** Following the general procedure, the target product was obtained after purification by column chromatography (PE) as a white solid (41.2 mg, 0.170 mmol, 85% yield).

<sup>1</sup>H NMR (400 MHz, chloroform-*d*)  $\delta$  8.01 (dz, J = 7.8 Hz, 1H), 7.89 (d, J = 8.2 Hz, 1H), 7.58 (dd, J = 9.1, 4.1 Hz, 1H), 7.49 (td, J = 8.7, 1.4 Hz, 1H), 7.46 – 7.36 (m, 2H), 7.10 (td, J = 8.9, 2.7 Hz, 1H). <sup>13</sup>C NMR (101 MHz, chloroform-*d*)  $\delta$  159.23 (d, <sup>1</sup> $J_{C-F} = 239.4$  Hz), 154.87, 154.57, 142.14, 125.33, 125.05, 124.89, 124.69 (d, <sup>3</sup> $J_{C-F} = 10.9$  Hz), 124.38, 119.86, 118.27 (d, <sup>4</sup> $J_{C-F} = 3.8$  Hz), 113.12 (d, <sup>3</sup> $J_{C-F} = 9.6$  Hz), 112.29 (d, <sup>2</sup> $J_{C-F} = 26.0$  Hz), 105.55 (d, <sup>2</sup> $J_{C-F} = 26.5$  Hz). HRMS (ESI<sup>+</sup>) m/z: [M]<sup>+</sup> calcd for C<sub>14</sub>H<sub>7</sub>FOS 242.0196, found 242.0196.



**7-fluorobenzo[4,5]thieno[3,2-b]benzofuran (2g):** Following the general procedure, the target product was obtained after purification by column chromatography (PE) as a white solid (37.8 mg, 0.156 mmol, 78% yield).

<sup>1</sup>H NMR (400 MHz, chloroform-*d*)  $\delta$  8.03 (dd, J = 7.9, 0.7 Hz, 1H), 7.93 – 7.75 (m, 2H), 7.52 (td, J = 7.2, 1.0 Hz, 1H), 7.41 – 7.33 (m, 2H), 7.17 (ddd, J = 9.5, 8.6, 2.4 Hz, 1H). <sup>13</sup>C NMR (101 MHz, chloroform-*d*)  $\delta$  160.45 (d, <sup>3</sup>J<sub>C-F</sub> = 14.0 Hz), 160.19 (d, <sup>1</sup>J<sub>C-F</sub> = 242.8 Hz), 159.29 (d,

 ${}^{4}J_{C-F} = 4$  Hz) 138.35, 130.21, 125.55, 124.13, 124.02, 121.45, 120.53, 119.63, 119.17 (d,  ${}^{3}J_{C-F} = 9.6$  Hz), 111.54 (d,  ${}^{2}J_{C-F} = 23.6$  Hz), 100.48 (d,  ${}^{2}J_{C-F} = 27.0$  Hz). HRMS (ESI<sup>+</sup>) m/z: [M]<sup>+</sup> calcd for C<sub>14</sub>H<sub>7</sub>FOS 242.0196, found 242.0195.



**6-fluorobenzo[4,5]thieno[3,2-b]benzofuran (2h):** Following the general procedure, the target product was obtained after purification by column chromatography (PE) as a white solid (32.9 mg, 0.136 mmol, 68% yield).

<sup>1</sup>H NMR (400 MHz, chloroform-*d*)  $\delta$  8.05 (d, J = 7.9 Hz, 1H), 7.84 (d, J = 8.1 Hz, 1H), 7.68 (dd, J = 7.8, 1.0 Hz, 1H), 7.52 (td, J = 7.6, 1.2 Hz, 1H), 7.39 (td, J = 8.5, 1.3 Hz, 1H), 7.33 (td, J = 8.0, 4.3 Hz, 1H), 7.11 (dd, J = 8.2, 1.1 Hz, 1H). <sup>13</sup>C NMR (101 MHz, chloroform-*d*)  $\delta$  159.88, 147.78 (d, <sup>1</sup> $J_{C-F}$  = 250.0 Hz), 147.04 (d, <sup>2</sup> $J_{C-F}$  = 12.6 Hz), 138.49, 129.93, 127.04 (d, <sup>4</sup> $J_{C-F}$  = 2.6 Hz), 125.52, 124.29 (d, <sup>3</sup> $J_{C-F}$  = 6.3 Hz), 124.16, 124.04, 121.49, 120.18, 114.71 (d, <sup>3</sup> $J_{C-F}$  = 3.9 Hz), 110.45 (d, <sup>2</sup> $J_{C-F}$  = 15.9 Hz). HRMS (ESI<sup>+</sup>) m/z: [M]<sup>+</sup> calcd for C<sub>14</sub>H<sub>7</sub>FOS 242.0196, found 242.0196.



**7,8-difluorobenzo[4,5]thieno[3,2-***b***]benzofuran (2i):** Following the general procedure, the target product was obtained after purification by column chromatography (PE) as a white solid (37.4 mg, 0.144 mmol, 72% yield).

<sup>1</sup>H NMR (400 MHz, chloroform-*d*)  $\delta$  7.99 (ddd, J = 7.3, 1.2, 0.7 Hz, 1H), 7.84 (ddd, J = 8.0, 1.1, 0.9 Hz, 1H), 7.67 (dd, J = 9.6, 7.7 Hz, 1H), 7.53 (td, J = 7.6, 1.1 Hz, 1H), 7.48 (dd, J = 9.8, 6.3 Hz, 1H), 7.39 (ddd, J = 8.5, 7.3, 1.4 Hz, 1H). <sup>13</sup>C NMR (101 MHz, chloroform-*d*)  $\delta$  160.20 (d, J = 3.7 Hz), 155.07 (d, J = 10.7 Hz), 147.95 (dd, J = 271.7, 13.9 Hz), 147.80 (dd, J = 215.1, 13.9 Hz), 138.15, 129.67, 125.58, 124.19, 124.06, 121.21, 119.57, 119.48, 106.18 (d, J = 21.2 Hz), 101.69 (d, J = 22.6 Hz). HRMS (ESI<sup>+</sup>) m/z: [M]<sup>+</sup> calcd for C<sub>14</sub>H<sub>6</sub>F<sub>2</sub>OS 260.0102, found 260.0099.



**7-chlorobenzo[4,5]thieno[3,2-b]benzofuran (2j):** Following the general procedure, the target product was obtained after purification by column chromatography (PE) as a white solid (44.6 mg, 0.172 mmol, 86% yield).

<sup>1</sup>H NMR (400 MHz, chloroform-*d*)  $\delta$  8.02 (ddd, J = 7.9, 1.2, 0.6 Hz, 1H), 8.26 (dd, J = 8.2, 0.4 Hz, 1H), 7.81 (ddd, J = 7.9, 1.1, 0.7 Hz, 1H), 7.63 (d, J = 1.8 Hz, 1H), 7.51 (ddd, J = 7.4, 7.3, 1.1 Hz, 1H), 7.38 (d, J = 8.2 Hz, 1H), 7.36 (dt, J = 6.7, 1.2 Hz, 1H). <sup>13</sup>C NMR (101 MHz, chloroform-*d*)  $\delta$  160.53, 159.77, 138.40, 130.12, 129.50, 125.62, 124.26, 124.15 (one carbon

was overlapped), 122.71, 121.55, 119.67, 119.46, 112.78. HRMS (ESI<sup>+</sup>) m/z:  $[M]^+$  calcd for  $C_{14}H_7ClOS$  257.9900, found 257.9901.



**6-chlorobenzo[4,5]thieno[3,2-b]benzofuran (2k):** Following the general procedure, the target product was obtained after purification by column chromatography (PE) as a white solid (33.6 mg, 0.130 mmol, 65% yield).

<sup>1</sup>H NMR (400 MHz, chloroform-*d*)  $\delta$  8.05 (dd, J = 7.3, 0.7 Hz, 1H), 7.90 – 7.78 (m, 2H), 7.53 (td, J = 7.7, 1.5 Hz, 1H), 7.43 – 7.30 (m, 3H). <sup>13</sup>C NMR (101 MHz, chloroform-*d*)  $\delta$  159.58, 155.90, 138.39, 129.95, 125.46, 125.40, 124.38, 124.11, 123.96, 123.84, 121.42, 120.23, 117.47, 117.01. HRMS (ESI<sup>+</sup>) m/z: [M]<sup>+</sup> calcd for C<sub>14</sub>H<sub>7</sub>ClOS 257.9900, found 257.9894.



**3-chlorobenzo[4,5]thieno[3,2-b]benzofuran (2l):** Following the general procedure, the target product was obtained after purification by column chromatography (PE) as a white solid (41.7 mg, 0.161 mmol, 81% yield).

<sup>1</sup>H NMR (400 MHz, chloroform-*d*)  $\delta$  8.03 (d, J = 2.1 Hz, 1H), 7.90 (dd, J = 7.3, 2.1 Hz, 1H), 7.75 (d, J = 8.6 Hz, 1H), 7.62 (d, J = 8.5 Hz, 1H), 7.47 – 7.29 (m, 3H). <sup>13</sup>C NMR (101 MHz, chloroform-*d*)  $\delta$  160.63, 160.01, 136.15, 131.58, 131.49, 124.90, 123.96 (one carbon was overlapped), 123.75, 123.50, 121.28, 119.36, 119.10, 112.06. HRMS (ESI<sup>+</sup>) m/z: [M]<sup>+</sup> calcd for C<sub>14</sub>H<sub>7</sub>ClOS 257.9900, found 257.9899.



**3-(tert-butyl)benzo[4,5]thieno[3,2-***b***]benzofuran (2m):** Following the general procedure, the target product was obtained after purification by column chromatography (PE) as a white solid (51.0 mg, 0.182 mmol, 91% yield).

<sup>1</sup>H NMR (400 MHz, chloroform-*d*)  $\delta$  8.05 (d, J = 2.4 Hz, 1H), 7.96 (dd, J = 7.1, 0.8 Hz, 1H), 7.76 (d, J = 8.6 Hz, 1H), 7.61 (d, J = 8.0, 1H), 7.48 – 7.29 (m, 3H), 1.46 (s, 9H). <sup>13</sup>C NMR (101 MHz, chloroform-*d*)  $\delta$  160.73, 159.45, 148.90, 135.40, 130.54, 126.40, 124.16, 123.54, 121.94, 120.12, 119.80, 119.20, 118.02, 112.04, 34.98, 31.75. HRMS (ESI<sup>+</sup>) m/z: [M]<sup>+</sup> calcd for C<sub>18</sub>H<sub>16</sub>OS 280.0916, found 280.0910.



**benzo**[4,5]thieno[3,2-*b*]naphtho[2,3-d]furan (2n)<sup>2,11</sup>: Following the general procedure, the target product was obtained after purification by column chromatography (PE) as a white solid (34.7 mg, 0.127 mmol, 63% yield).

<sup>1</sup>H NMR (400 MHz, chloroform-*d*)  $\delta$  8.32 (s, 1H), 8.18 (d, *J* = 7.3 Hz, 1H), 8.13 – 7.94 (m, 3H), 7.86 (d, *J* = 8.0 Hz, 1H), 7.66 – 7.46 (m, 3H), 7.39 (t, *J* = 8.2 Hz, 1H). <sup>13</sup>C NMR (101 MHz, chloroform-*d*)  $\delta$  162.05, 159.60, 154.96, 149.58, 138.07, 130.71, 130.54, 130.45, 128.00, 125.59, 125.12, 124.83, 124.37, 124.01, 123.80, 121.49, 116.59, 107.86. HRMS (ESI<sup>+</sup>) m/z: [M]<sup>+</sup> calcd for C<sub>18</sub>H<sub>10</sub>OS 274.0447, found 274.0457.



**thieno**[3,2-*b*]**benzofuran** (20)<sup>12</sup>: Following the general procedure, the target product was obtained after purification by column chromatography (PE) as a white solid (15.7 mg, 0.0901 mmol, 45% yield).

<sup>1</sup>H NMR (400 MHz, chloroform-*d*)  $\delta$  7.69 (dd, J = 7.1, 2.1 Hz, 1H), 7.57 (dd, J = 7.1, 2.3 Hz, 1H), 7.39 (d, J = 5.3 Hz, 1H), 7.36 – 7.28 (m, 2H), 7.17 (d, J = 5.3 Hz, 1H). <sup>13</sup>C NMR (101 MHz, chloroform-*d*)  $\delta$  159.28, 159.17, 127.53, 124.35, 123.75, 122.97, 119.31, 119.07, 112.44, 111.47. HRMS (ESI<sup>+</sup>) m/z: [M]<sup>+</sup> calcd for C<sub>10</sub>H<sub>6</sub>OS 174.0134, found 174.0132.



**thieno**[2',3':4,5]**thieno**[3,2-*b*]**benzofuran (2p):** Following the general procedure, the target product was obtained after purification by column chromatography (PE) as a white solid (18.6 mg, 0.0808 mmol, 40% yield).

<sup>1</sup>H NMR (400 MHz, chloroform-*d*)  $\delta$  7.75 – 7.63 (m, 1H), 7.61 – 7.55 (m, 1H), 7.41 (d, *J* = 5.1 Hz, 1H), 7.36 – 7.29 (m, 3H). <sup>13</sup>C NMR (101 MHz, chloroform-*d*)  $\delta$  158.26, 150.50, 141.79, 128.39, 126.63, 124.66, 124.31, 123.41, 122.60, 121.14, 118.87, 112.49. HRMS (ESI<sup>+</sup>) m/z: [M]<sup>+</sup> calcd for C<sub>12</sub>H<sub>6</sub>OS<sub>2</sub> 229.9855, found 229.9855.



Thieno[4,5:4',5']thieno[3,2-b:3',2'-b']di(benzofuran) (2q): Following the general procedure, the target product was obtained after purification by column chromatography (PE) as a white solid (13.8 mg, 0.0319 mmol, 16% yield).

<sup>1</sup>H NMR (400 MHz, chloroform-*d*)  $\delta$  7.63 (d, *J* = 1.6 Hz, 2H), 7.61 (d, *J* = 8.2 Hz, 2H), 7.41 (dd, *J* = 8.2, 1.7 Hz, 2H), 1.42 (s, 18H). <sup>13</sup>C NMR (101 MHz, chloroform-*d*)  $\delta$  159.05, 151.13, 148.99, 123.86, 121.90, 121.40, 120.56, 118.20, 109.46, 35.24, 31.71. HRMS (ESI<sup>+</sup>) m/z: [M]<sup>+</sup> calcd for C<sub>26</sub>H<sub>24</sub>O<sub>2</sub>S<sub>2</sub> 432.1212, found 432.1210.

#### 4. Kinetic isotope effect study



**2-(3-bromobenzo[b]thiophen-2-yl)phenol (1a-Br)** <sup>2,6</sup>: To a 100 mL two-neck flask with a stirring bar, 2,3-dibromobenzo[*b*]thiophene (5 mmol, 1 equiv), 2-hydroxyphenylboronic acid (7.5 mmol, 1.5 equiv),  $K_2CO_3$  (10 mmol, 2 equiv) and Pd(PPh<sub>3</sub>)<sub>4</sub> (0.25 mmol, 5 mol %) were added. The two-neck flask was evacuated and refilled with nitrogen three times. 1,4-Dioxane/H<sub>2</sub>O (30 mL, v:v = 4:1) was added in a stream of nitrogen atmosphere. It was bubbled with nitrogen for 15 minutes to remove oxygen. The reaction was heated to 90 °C overnight. After being allowed to cool to room temperature, 1M HCl (20 mL) was added to acidify the solution. By extraction with CH<sub>2</sub>Cl<sub>2</sub>, the organic layer was separated and dried with Na<sub>2</sub>SO<sub>4</sub>. After evaporation under a vacuum, the residue was purified on silica gel column chromatography with hexane/EA (v:v = 10:1) as the eluent to afford the corresponding compound **1a-Br** (Colorless oil, 854 mg, 2.80 mmol, 56% yield).

<sup>1</sup>H NMR (400 MHz, chloroform-*d*)  $\delta$  7.88 (ddd, *J* = 8.1, 1.5, 0.8 Hz, 1H), 7.84 (ddd, *J* = 8.0, 1.3, 0.8 Hz, 1H), 7.55 – 7.42 (m, 2H), 7.41 – 7.32 (m, 2H), 7.09 – 7.00 (m, 2H), 5.28 (s, 1H). <sup>13</sup>C NMR (101 MHz, chloroform-*d*)  $\delta$  153.33, 138.75, 138.32, 133.40, 131.67, 131.24, 125.91, 125.47, 123.67, 122.39, 120.68, 118.96, 116.33, 108.57. HRMS (ESI<sup>-</sup>) m/z: [M–H]<sup>-</sup> calcd for C<sub>14</sub>H<sub>9</sub>BrOS 302.9485, found 302.9479.



**2-(benzo[b]thiophen-2-yl-3-d)phenol (1a-D):** To a solution of 2-(3-bromobenzo[b]thiophen-2-yl)phenol (**1a-Br**, 305 mg, 1.0 mmol) in Et<sub>2</sub>O (15 mL) was added dropwise n-BuLi (2.5 M in hexane, 2 mL, 5 mmol) at -78 °C, then the mixture was stirred for 2 h. CD<sub>3</sub>OD (1.2 mL) was added to the reaction mixture and slowly warmed to room temperature and stirred for 1 h. D<sub>2</sub>O (1 mL) and HCl (1 M, 10 mL) were added to the reaction mixture. By extraction with CH<sub>2</sub>Cl<sub>2</sub>, the organic layer was separated and dried with Na<sub>2</sub>SO<sub>4</sub>. After evaporation under a vacuum, the residue was purified on silica gel column chromatography with PE/EA (v:v = 10:1) as the eluent to afford the compound **1a-D** (209 mg, 0.919 mmol, 92% yield, 95%D).

<sup>1</sup>H NMR (400 MHz, chloroform-*d*)  $\delta$  7.94 (ddd, *J* = 7.3, 2.3, 0.8 Hz, 1H), 7.64 (dd, *J* = 7.0, 1.6, 0.8 Hz, 1H), 7.47 – 7.36 (m, 2H), 7.35 – 7.28 (m, 2H), 7.09 – 6.96 (m, 2H), 5.13 (s, 1H). <sup>13</sup>C NMR (101 MHz, chloroform-*d*)  $\delta$  153.32, 140.47, 138.07, 132.10, 130.79, 129.69, 125.42 (t, *J* = 27.9 Hz), 124.92, 124.63, 123.09, 122.89, 121.56, 120.62, 115.84. HRMS (ESI<sup>-</sup>) m/z: [M–H]<sup>-</sup> calcd for C<sub>14</sub>H<sub>9</sub>DOS 226.0442, found 226.0433.



#### Attempt of KIE with 2a.

a) Into a 25 mL Schlenk tube with a stirring bar, **1a** (0.2 mmol), Cu(OAc)<sub>2</sub> (0.6 mmol, 3 equiv) and Cs<sub>2</sub>CO<sub>3</sub> (0.2 mmol, 1 equiv) were sequentially added. The tube was evacuated and refilled with nitrogen three times. Pyridine (water  $\leq$  50 ppm) (4 mL) was added in a stream of nitrogen atmosphere. The tube was sealed and it was bubbled with nitrogen for 15 minutes to remove oxygen. The reaction was heated to 110 °C under nitrogen atmosphere for 6 h. After warmed to room temperature, 1M HCl (15 mL) was added to acidify the solution. By extraction with CH<sub>2</sub>Cl<sub>2</sub> (4 × 10 mL), the organic layer was separated and dried with Na<sub>2</sub>SO<sub>4</sub>. After evaporation under a vacuum, the residue was purified on silica gel column chromatography with hexane as the eluent to afford the target compounds **2a** (white solid, 21.6 mg, 0.0963 mmol, 48% yield).

b) Into a 25 mL Schlenk tube with a stirring bar, **1a**-*D* (0.2 mmol), Cu(OAc)<sub>2</sub> (0.6 mmol, 3 equiv) and Cs<sub>2</sub>CO<sub>3</sub> (0.2 mmol, 1 equiv) were sequentially added. The tube was evacuated and refilled with nitrogen three times. Pyridine (water  $\leq$  50 ppm) (4 mL) was added in a stream of nitrogen atmosphere. The tube was sealed and it was bubbled with nitrogen for 15 minutes to remove oxygen. The reaction was heated to 110 °C under nitrogen atmosphere for 6 h. After warmed to room temperature, 1M HCl (15 mL) was added to acidify the solution. By extraction with CH<sub>2</sub>Cl<sub>2</sub> (4 × 10 mL), the organic layer was separated and dried with Na<sub>2</sub>SO<sub>4</sub>. After evaporation under a vacuum, the residue was purified on silica gel column chromatography with hexane as the eluent to afford the target compounds **2a** (white solid, 18.5 mg, 0.0824 mmol, 41% yield), **1a-D** (21% yield, 95%D), K<sub>H</sub>/K<sub>D</sub> = 1.1.

#### 5. Gram scale synthesis.



**benzo**[4,5]thieno[3,2-*b*]benzofuran (2a): Into a 250 mL two-neck boiling flask with a stirring bar, substrates 1a (1.344 g, 6 mmol), Cu(OAc)<sub>2</sub> (18 mmol, 3 equiv) and Cs<sub>2</sub>CO<sub>3</sub> (6 mmol, 1 equiv) were sequentially added. The flask was evacuated and refilled with nitrogen three times. Pyridine (water  $\leq$  50 ppm) (100 mL) was added in a stream of nitrogen atmosphere. The flask was sealed and it was bubbled with nitrogen for 15 minutes to remove oxygen. The reaction was heated to 110 °C under nitrogen atmosphere for 16 h. After being cooled to room temperature, 1M HCl (150 mL) was added to acidify the solution. By extraction with EA (4 × 40 mL), the organic layer was separated and dried with Na<sub>2</sub>SO<sub>4</sub>. After evaporation under a vacuum, the residue was purified on silica gel column chromatography with hexane as the eluent to afford the target compounds 2 as a white solid (1.062 g, 4.74 mmol, 79% yield).



**8-fluorobenzo[4,5]thieno[3,2-b]benzofuran (2f):** Into a 250 mL two-neck boiling flask with a stirring bar, substrates **1f** (1.344 g, 6 mmol), Cu(OAc)<sub>2</sub> (18 mmol, 3 equiv) and Cs<sub>2</sub>CO<sub>3</sub> (6 mmol, 1 equiv) were sequentially added. The flask was evacuated and refilled with nitrogen three times. Pyridine (water  $\leq$  50 ppm) (100 mL) was added in a stream of nitrogen atmosphere. The flask was sealed and it was bubbled with nitrogen for 15 minutes to remove oxygen. The reaction was heated to 110 °C under nitrogen atmosphere for 16 h. After being cooled to room temperature, 1M HCl (150 mL) was added to acidify the solution. By extraction with EA (4 × 40 mL), the organic layer was separated and dried with Na<sub>2</sub>SO<sub>4</sub>. After evaporation under a vacuum, the residue was purified on silica gel column chromatography with hexane as the eluent to afford the target compounds **2f** as a white solid (1.082 g, 4.47 mmol, 75% yield).

#### 6. References

- 1. M. Jacubert, O. Provot, J.-F. Peyrat, A. Hamze, J.-D. Brion and M. Alami, *Tetrahedron*, 2010, **66**, 3775-3787.
- Kenji Yamazaki, Soichiro Kawamorita, Hirohisa Ohmiya and M. Sawamura, Org. Lett., 2010, 12, 3978-3981.
- 3. H. Kaida, T. Satoh, K. Hirano, M. Miura, Chem. Lett., 2015, 44, 1125-1127.
- D. Chen, D. Yuan, C. Zhang, H. Wu, J. Zhang, B. Li and X. Zhu, J. Org. Chem., 2017, 82, 10920-10927.

- 5. L. Fu, S. Li, Z. Cai, Y. Ding, X.-Q. Guo, L.-P. Zhou, D. Yuan, Q.-F. Sun and G. Li, *Nat. Catal.*, 2018, 1, 469-478.
- 6. Z. He, H. J. Shrives, J. A. Fernández-Salas, A. Abengózar, J. Neufeld, K. Yang, A. P. Pulis and D. J. Procter, *Angew. Chem. Int. Ed.*, 2018, **57**, 5759-5764.
- Y. M. Wu, W. Li, L. F. Jiang, L. Q. Zhang, J. B. Lan and J. S. You, *Chem. Sci.*, 2018, 9, 6878-6882.
- D. Zhu, Z. Wu, B. Luo, Y. Du, P. Liu, Y. Chen, Y. Hu, P. Huang and S. Wen, Org. Lett., 2018, 20, 4815-4818.
- 9. W. Ma, J. Huang, C. Li, Y. Jiang, B. Li, T. Qi and X. Zhu, RSC Adv., 2019, 9, 7123-7127.
- 10. K. Mitsudo, R. Matsuo, T. Yonezawa, H. Inoue, H. Mandai and S. Suga, *Angew. Chem. Int. Ed.*, 2020, **59**, 7803-7807.
- M. Shi, Y. He, Y. Sun, D. Fang, J. Miao, M. U. Ali, T. Wang, Y. Wang, T. Zhang and H. Meng, Org. Electron., 2020, 84, 105793.
- 12. R. A. Krishnan, S. A. Babu, R. N. P, J. Krishnan and J. John, *Org. Lett.*, 2021, **23**, 1814-1819.

# 7. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra

<sup>1</sup>H NMR spectrum for **1a** (400 MHz, CDCl<sub>3</sub>)



 $^{13}\text{C}$  NMR spectrum for  $1a~(100~\text{MHz},\text{CDCl}_3)$ 



#### HRMS (ESI) spectrum for 1a



#### <sup>13</sup>C NMR spectrum for **1b** (100 MHz,CDCl<sub>3</sub>)









HRMS (ESI) spectrum for 1c



<sup>1</sup>H NMR spectrum for **1d** (400 MHz,CDCl<sub>3</sub>)



# <sup>13</sup>C NMR spectrum for **1d** (100 MHz,CDCl<sub>3</sub>)









# HRMS (ESI) spectrum for 1e











HRMS (ESI) spectrum for 1f





HRMS (ESI) spectrum for 1g











HRMS (ESI) spectrum for 1i



# <sup>13</sup>C NMR spectrum for **1j** (100 MHz,CDCl<sub>3</sub>)



HRMS (ESI) spectrum for 1j





HRMS (ESI) spectrum for 1k



# <sup>13</sup>C NMR spectrum for **11** (100 MHz,CDCl<sub>3</sub>)



HRMS (ESI) spectrum for 11





HRMS (ESI) spectrum for 1m



<sup>1</sup>H NMR spectrum for **1n** (400 MHz,CDCl<sub>3</sub>)













#### HRMS (ESI) spectrum for 10



# <sup>13</sup>C NMR spectrum for **1p** (100 MHz,CDCl<sub>3</sub>)



HRMS (ESI) spectrum for 1p





# <sup>1</sup>H NMR spectrum for **1q** (400 MHz,CDCl<sub>3</sub>)

HRMS (ESI) spectrum for 1q



<sup>1</sup>H NMR spectrum for **2a** (400 MHz,CDCl<sub>3</sub>)







HRMS (ESI) spectrum for 2a





HRMS (ESI) spectrum for 2b



<sup>1</sup>H NMR spectrum for **2c** (400 MHz,CDCl<sub>3</sub>)



# <sup>13</sup>C NMR spectrum for **2c** (100 MHz,CDCl<sub>3</sub>)



#### HRMS (ESI) spectrum for 2c





# HRMS (ESI) spectrum for 2d



<sup>1</sup>H NMR spectrum for **2e** (400 MHz,CDCl<sub>3</sub>)













#### HRMS (ESI) spectrum for 2f

















HRMS (ESI) spectrum for 2h





HRMS (ESI) spectrum for 2i





<sup>13</sup>C NMR spectrum for **2j** (100 MHz,CDCl<sub>3</sub>)



HRMS (ESI) spectrum for 2j







S58

# <sup>13</sup>C NMR spectrum for **2k** (100 MHz,CDCl<sub>3</sub>)



HRMS (ESI) spectrum for 2k





















HRMS (ESI) spectrum for 2n



# <sup>13</sup>C NMR spectrum for **20** (100 MHz,CDCl<sub>3</sub>)









<sup>13</sup>C NMR spectrum for **2p** (100 MHz,CDCl<sub>3</sub>)



# HRMS (ESI) spectrum for 2p



<sup>1</sup>H NMR spectrum for **2q** (400 MHz,CDCl<sub>3</sub>)







HRMS (ESI) spectrum for 2q





HRMS (ESI) spectrum for 1a-Br













