Ultrafast synthesis of near-zero-cost S-doped $Ni(OH)_2$ on C_3N_5 at ambient condition with enhanced photocatalytic activity

Lixiao Han#, Cong Peng#, Jinming Huang, Shengyao Wang, Xiaohu Zhang, Hao Chen,

Yi Yang*

College of Science, Huazhong Agricultural University, Wuhan 430070, PR China yiyang@mail.hzau.edu.cn

Fig. S1. The photograph of photocatalytic H₂ system.

Fig. S2. XRD patterns of S-Ni(OH)₂ and Ni(OH)₂.

Fig. S3. High-resolution XPS spectra of C 1s (a), N 1s (b), and O 1s (c) of 1.0 wt% S-Ni(OH)₂- C_3N_5 .

Table S1. The element content of C, N, S, (determined by elemental analysis) and Ni (determined by ICP-MS) of the prepared S-Ni(OH)₂-C₃N₅ materials.

Samples	N (wt%)	C (wt%)	S (wt%)	Ni (wt%)
0.5 wt% S-Ni(OH) ₂ -C ₃ N ₅	59.38	32.91	0.341	0.3
1.0 wt% S-Ni(OH) ₂ -C ₃ N ₅	57.64	31.42	0.555	0.98
2.0 wt% S-Ni(OH) ₂ -C ₃ N ₅	56.5	31.26	1.509	1.6

Fig. S4. Influence of mol ratio of Ni²⁺/Na₂S on the H₂ production activity of 1.0 wt% S-Ni(OH)₂-Ni(OH)₂.

Fig. S5. Change tendency of NO₂ during NO oxidation procedure over 1.0 wt% S-Ni(OH)₂-C₃N₅.

Fig. S6. The solid-state UV-Vis-NIR diffuse reflectance spectra (DRS) of S-Ni(OH)₂.

Fig. S7. The Mott - Schottky plots of S-Ni(OH)₂.

Fig. S8. The NO₂ concentration during the photocatalytic NO removal with scavengers on 1.0 wt% S-Ni(OH)₂-C₃N₅.

Table 52. The residual fails of 1002 by using different seavengers on 1.0 wt/0 5-14(011)2-031							
*Scavenger	No	$Na_2C_2O_4$	TBA	PBQ	β-carotene		
	scavenger	(h ⁺)	(•OH)	$(\bullet O_2^-)$	$({}^{1}O_{2})$		
**Residual ration of NO ₂	26.4%	2.0%	40.7%	20.0%	35.0%		

Table S2. The residual ratio of NO₂ by using different scavengers on 1.0 wt% S-Ni(OH)₂-C₃N₅.

* Na_2C_2O_4 for h+, TBA for •OH, PBQ for •O_2^- and $\beta\text{-carotene}$ for 1O_2

**Residual ration of $NO_2 = C_{NO2} / \Delta C_{NO}$