Electronic Supplementary Information (ESI) for

A Thiadiazolopyridine-Functionalized Zr(IV)-Based Metal-Organic

Framework for Enhanced Photocatalytic Synthesis of

Tetrahydroquinolines under Visible Light

Changyun Li,^{1†} He Zhang,^{1†} Xuefei Wang,¹ Qiu-Yan Li,¹* Xinsheng Zhao² and Xiao-Jun Wang¹*

¹Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China

²School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, P. R.

China.

E-mail: qyli@jsnu.edu.cn; xjwang@jsnu.edu.cn

[†]These authors have contributed equally to this work.

General method and materials

Unless specifically mentioned, all chemicals are commercially available and were used as received. NMR spectra were taken on a Bruker AV400 at room temperature. The powder X-ray diffraction (PXRD) measurements were taken on a Bruker D8 diffractometer using Cu- K_{α} radiation ($\lambda = 1.5418$ Å) at room temperature. Low-pressure gas sorption measurements were performed by using Quantachrome Instruments Autosorb-iQ (Boynton Beach, Florida USA) with the extra-high pure gases. The infrared spectra were recorded on a Thermo Scientific Nicolet iS10 FT-IR spectrometer as KBr pellets. Thermal gravimetric analyses (TGA) were performed on a TA-Q50 thermoanalyzer thermogravimetric analyzer in nitrogen atmosphere from 45 °C to 800 °C at the rate of 10 °C min⁻¹.

Fig. S1 The FT-IR comparison of H₂-DMT, H₂-TDP ligands and MOF UiO-68-TDP, the disappearance of peak COOH at 2500 \sim cm⁻¹ in MOF indicative of the coordination of carboxylic acid with Zr⁴⁺.

Fig. S2 TGA of UiO-68-TDP under N_2 atmosphere with a heating rate of 10 °C/min, suggesting it can be stable as high as ~500 °C.

Fig.S3 ¹H NMR of digested UiO-68-TDP in DMSO- d_6 . The ratio of linkers H₂TDP and H₂DMT in as-prepared MOF UiO-68-TDP was calculated from the integration of Ha (H₂TDP) and H1 (H₂DMT), giving the ratio of 1:5, which is slightly lower the initial ratio of 1:3 in preparation of MOF. The low content of H₂-TDP linker in MOF should be ascribed to its lower solubility in comparison to H₂-DMT.

Fig. S4 The preparation for MOF UiO-68-BTD composed by the mixed linkers of H₂-BTD and H₂-DMT, which was prepared according to our previous work (*Acta Chim. Sinica* 2017, *75*,

80-85).

General Procedure for Photocatalysis

The weighed various photocatalysts (including MOF UiO-68-TDP, UiO-68-BTD, organic linkers, ZrCl₄ and others) *N*,*N*-dimethylanilines (0.2 mmol) and maleimides (0.1 mmol) were added into CH₃CN (1 mL). The reaction mixture with stirring was irradiated by blue LEDs for 12 hours under air at room temperature. After that, 0.1 mmol 1-methyl-2,4-dinitrobenzene as an internal standard was added into the mixture and stirred at room temperature for 10 min in dark. Then, the reaction mixture was extracted by dichloromethane (20 mL). The organic layer was dried over Na₂SO₄ and evaporated for subsequent ¹H NMR analysis to determine the yield by integration of H_A from internal standard and H_B from product (as shown in below.)

$1a 2a \xrightarrow{photocatalyst} 0 \xrightarrow{photocatalyst} 3a$				
Entry	Conditions	Light	Solvent	Yield ^b
1	UiO-68-TDP, 4 mg	+	DMF	64%
2	UiO-68-TDP, 4 mg	+	THF	30%
3	UiO-68-TDP, 4 mg	+	DCM	28%
4	ZrCl ₄ , 4 mg	+	CH ₃ CN	12%
5	H ₂ -TDP, 4 mg	+	DMF	66%
6	H ₂ -DMT, 4 mg	+	DMF	16%

Table S1. Screening of the photocatalytic reaction conditions of 1a and 2a under other

conditions.^a

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.1 mmol) in solvent (1 mL) under an air atmosphere at room temperature for 12 h, blue LEDs ($\lambda_{max} = 450$ nm, 3 W). ^{*b*}Yield was determined by ¹H-NMR analysis based on **2a**.

Fig. S7¹H NMR (Entry 3, Table 1).

Fig. S11 ¹H NMR (Entry 7, Table 1).

Fig. S14 ¹H NMR (Entry 1, Table S1).

Fig. S16 ¹H NMR (Entry 3, Table S1).

Fig. S18 $^1\mathrm{H}$ NMR (Entry 5 , Table S1).

Fig. S19 ¹H NMR (Entry 6, Table S1).

Fig. S20 ¹H NMR (3b, Table 2).

Fig. S22 ¹H NMR (3d, Table 2).

Fig. S26 ¹H NMR (3h, Table 2).

Fig. S32 ¹H NMR (3n, Table 2).

Fig. S34 ¹H NMR (3p, Table 2)