Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Supplementary File

Fig. 1S. Nyquist plots of (inset) bare PGE, (i) GR/PGE, (ii) ZnO/GR/PGE in 1 mM K₄[Fe(CN)₆] / K₃[Fe(CN)₆] solutions containing 1 M KCl.

Fig. 2S. IR Spectrum of (i) GR/PGE and (ii) ZnO /GR/PGE.

Fig. 38. XRD patterns of GR/PGE and ZnO/GR/PGE

Fig. 4S. (A) Cyclic voltammograms of 6 nM Cortisol at ZnO/GR/PGE with varying scan rates from (i) 0.01 V/s (xi) 0.10 V/s (B) Plot of logarithm of cathodic peak currents against logarithm of scan rate.

Fig. 5S. Effect of number of cycles on ZnO deposition on GR/PGE towards electrocatalytic detection of cortisol.

Fig. 6S. Variation in cathodic peak current of cortisol with the presence of different interferents

Table 1S. A comparative study of linear range and limit of detection for the determination of cortisol with other sensors.

Working electrode	Technique	Linear dynamic range	Limit of detection	Refs.
Ni-SPE	Electrochemical	0.25-25µM	74 nM	[1]
Molecularly cortisol imprinted acrylamide polymers on fullerene modified carbon electrode	Electrochemical	0.5 – 64 nM	0.14 nM	[2]
EA/CORT-Ab/SH-PEG- COOH/AuNPs/MoS ₂ /AuNPs modified immunosensor	Electrochemical	0.5-200 nM	0.11 nM	[3]
Au electrodes functionalized by alkaline phosphate enzyme	Electrochemical		0.76 nM	[4]
ZnO/GR/PGE	Electrochemical	5 x 10 ⁻¹⁰ M - 115 x 10 ⁻¹⁰ M	0.15 nM	Current work

Working	Cathodic potential	Cathodic Peak current density	RSD (%)
electrode	(V)	(Acm ⁻²)	
ZnO/GR/PGE			
1	-0.58	3.78 x 10 ⁻³	0.72
2	-0.58	3.78 x 10 ⁻⁴	0.72
3	-0.585	3.76 x 10 ⁻³	0.78
4	-0.589	3.76 x 10 ⁻³	0.78
5	-0.592	3.73 x 10 ⁻³	0.86

Table 2S Reproducibility study of ZnO/GR/PGE

• ^a Mean value of five determinations.

• Concentration of cortisol taken is 6 nM

Fig 7S. (A) SEM image of ZnO/GR/PGE after cortisol detection and (B) TEM image of ZnO/GR/PGE after cortisol detection.

References

- 1 A. Gevaerd, E. Y. Watanabe, C. Belli, L. H. Marcolino-Junior and M. F. Bergamini, *Sens. Actuators, B*, 2021, **332**, 129532–129566, DOI: 10.1016/j.snb.2021.129532.
- 2 H. D. E. Uygun, Z. O. Uygun, E. Canbay, F. G. Sağın and E. Sezer, *Talanta*, 2020, **206**, 120225–120230, DOI: 10.1016/j.talanta.2019.120225.

- 3 J. Liu, N. Xu, H. Men, S. Li, Y. Lu, S.S. Low and Q. Liu, *Sensors*, 2020, **20**, 1422–1437, DOI: 10.3390/s20051422.
- 4 K. Sun, N. Ramgir and S. Bhansali, *Sens.Actuators, B*, 2008, **133**, 533–537, DOI: 10.1016/j.snb.2008.03.018.