Support information for

Aggregation-induced emission spectra of triphenylamine salicylaldehyde derivatives via excited-state intramolecular proton transfer revealed by molecular spectral and dynamic simulations

Qing Zhang,^a Yuanyuan Li,^a Zexing Cao*^a and Chaoyuan Zhu*^{cb}

^aState Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, China.

^bDepartment of Applied Chemistry and Institute of Molecular Science, National Chiao-Tung University, Hsinchu 30010, Taiwan.

^cDepartment of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.

Corresponding Authors:

*E-mails: <u>zxcao@xmu.edu.cn and cyzhu@mail.nctu.edu.tw</u>

Table S1. Cartesian coordinates of QM region atoms for S_0 (enol and keto forms) states for TS in itsONIOM model, simulated by using the ONIOM-EE(BMK/6-31G(d,p):UFF approach.

enol ket						keto	
Ν	0.28924700	0.51469500	-0.55735900	Ν	20.11400000	14.22000000	12.23000000
0	1.26095400	5.08248300	-1.55798500	0	21.82700000	9.83400000	11.51400000
0	0.33797700	6.93390600	-0.54209700	0	23.62800000	8.93800000	13.22100000
С	0.79197000	2.83934300	-1.04603800	С	20.98000000	11.99300000	11.88000000
С	0.49015800	4.19879600	-0.92385500	С	21.81500000	10.95600000	12.25800000
С	0.01263600	1.86952000	-0.41775800	С	20.95100000	13.17700000	12.60900000
С	0.70294600	-0.46548600	-0.25912300	С	20.40400000	15.56200000	12.64200000
С	1.13270800	2.27875500	0.36085600	С	21.78000000	13.31100000	13.73800000
С	1.63625500	0.06221300	-0.66643500	С	18.86600000	13.98000000	11.58200000
С	0.50518200	-1.37027300	0.79082000	С	19.48500000	16.28000000	13.38100000
С	0.63368100	4.61291400	-0.14925300	С	22.64700000	11.08300000	13.38300000
С	1.42211000	3.62557800	0.47579900	С	22.60800000	12.28400000	14.09200000
С	0.96856000	6.02127900	-0.01698700	С	23.53500000	10.02200000	13.77900000
С	2.88811500	-1.43575400	-0.67426600	С	21.89600000	17.43000000	12.72700000
С	1.89226600	-0.51094800	-0.99925400	С	21.60900000	16.14400000	12.30000000
С	1.95735300	-0.98611200	-1.54224300	С	18.45400000	14.77700000	10.54000000
С	1.49808300	-2.30110100	1.10028400	С	19.78600000	17.56500000	13.78600000
С	2.69858700	-2.33578500	0.38177300	С	20.99300000	18.14000000	13.46900000
С	2.63220300	0.61484900	0.15218000	С	18.02400000	12.98300000	12.03800000
С	4.26274400	-0.91921500	-0.77249000	С	16.37800000	13.57400000	10.42200000
С	3.26613000	-1.48031400	-1.58100700	С	17.20400000	14.56700000	9.96800000
С	3.94288000	0.13660200	0.08843200	С	16.78900000	12.78300000	11.45600000
Η	1.64622300	2.54729600	-1.64542600	Н	20.45900000	11.90000000	11.11300000
Η	2.27673300	3.94821700	1.06798200	Η	23.21500000	12.35000000	14.88700000
Η	0.41959000	-1.33095800	1.35858100	Н	18.64500000	15.87600000	13.61300000
Η	1.73441400	1.53612800	0.87151000	Н	21.77100000	14.09800000	14.23600000
Η	2.02649300	0.19053300	-1.81349900	Н	22.22600000	15.60200000	11.77700000
Η	3.46985800	-3.05540900	0.64290600	Η	21.19400000	19.12200000	13.79000000
Η	2.34912000	1.41140300	0.83120300	Η	18.32000000	12.44700000	12.82300000
Η	3.80423700	-1.45542600	-1.25881700	Η	22.71900000	17.82000000	12.46200000
Η	1.17564500	-1.40899100	-2.16743700	Η	19.01600000	15.45800000	10.27600000
Η	1.85947700	6.25183200	0.60249700	Η	24.09300000	10.23300000	14.6000000
Η	1.33085700	-2.98970600	1.91787700	Η	19.11800000	18.04500000	14.25900000
Η	5.27299900	-1.31424500	-0.80129100	Η	15.41400000	13.38800000	10.05000000
Η	3.51561000	-2.31151300	-2.23458400	Η	16.99400000	15.12000000	9.33500000
Η	4.70865700	0.56865100	0.72827500	Н	16.22600000	12.06800000	11.76700000
Η	0.88993800	5.97527000	-1.38922100	Н	22.97029472	9.14611154	12.43951992

Table S2. Cartesian coordinates of QM region atoms for S_1 (enol* and keto* forms) states for TS in its ONIOM model, simulated by using the ONIOM-EE((TD)BMK/6-31G(d,p):UFF approach.

	, , ,	enol*			(*)]	keto*	
N	0.28924700	0.51469500	-0.55735900	N	0.28924700	0.51469500	-0.55735900
0	1.26095400	5.08248300	-1.55798500	0	1.26095400	5.08248300	-1.55798500
0	-0.33797700	6.93390600	-0.54209700	0	-0.33797700	6.93390600	-0.54209700
С	0.79197000	2.83934300	-1.04603800	С	0.79197000	2.83934300	-1.04603800
С	0.49015800	4.19879600	-0.92385500	С	0.49015800	4.19879600	-0.92385500
С	-0.01263600	1.86952000	-0.41775800	С	-0.01263600	1.86952000	-0.41775800
С	-0.70294600	-0.46548600	-0.25912300	С	-0.70294600	-0.46548600	-0.25912300
С	-1.13270800	2.27875500	0.36085600	С	-1.13270800	2.27875500	0.36085600
С	1.63625500	0.06221300	-0.66643500	С	1.63625500	0.06221300	-0.66643500
С	-0.50518200	-1.37027300	0.79082000	С	-0.50518200	-1.37027300	0.79082000
С	-0.63368100	4.61291400	-0.14925300	С	-0.63368100	4.61291400	-0.14925300
С	-1.42211000	3.62557800	0.47579900	С	-1.42211000	3.62557800	0.47579900
С	-0.96856000	6.02127900	-0.01698700	С	-0.96856000	6.02127900	-0.01698700
С	-2.88811500	-1.43575400	-0.67426600	С	-2.88811500	-1.43575400	-0.67426600
С	-1.89226600	-0.51094800	-0.99925400	С	-1.89226600	-0.51094800	-0.99925400
С	1.95735300	-0.98611200	-1.54224300	С	1.95735300	-0.98611200	-1.54224300
С	-1.49808300	-2.30110100	1.10028400	С	-1.49808300	-2.30110100	1.10028400
С	-2.69858700	-2.33578500	0.38177300	С	-2.69858700	-2.33578500	0.38177300
С	2.63220300	0.61484900	0.15218000	С	2.63220300	0.61484900	0.15218000
С	4.26274400	-0.91921500	-0.77249000	С	4.26274400	-0.91921500	-0.77249000
С	3.26613000	-1.48031400	-1.58100700	С	3.26613000	-1.48031400	-1.58100700
С	3.94288000	0.13660200	0.08843200	С	3.94288000	0.13660200	0.08843200
Η	1.64622300	2.54729600	-1.64542600	Н	1.64622300	2.54729600	-1.64542600
Η	-2.27673300	3.94821700	1.06798200	Н	-2.27673300	3.94821700	1.06798200
Η	0.41959000	-1.33095800	1.35858100	Н	0.41959000	-1.33095800	1.35858100
Η	-1.73441400	1.53612800	0.87151000	Н	-1.73441400	1.53612800	0.87151000
Η	-2.02649300	0.19053300	-1.81349900	Н	-2.02649300	0.19053300	-1.81349900
Η	-3.46985800	-3.05540900	0.64290600	Н	-3.46985800	-3.05540900	0.64290600
Η	2.34912000	1.41140300	0.83120300	Н	2.34912000	1.41140300	0.83120300
Η	-3.80423700	-1.45542600	-1.25881700	Н	-3.80423700	-1.45542600	-1.25881700
Η	1.17564500	-1.40899100	-2.16743700	Н	1.17564500	-1.40899100	-2.16743700
Η	-1.85947700	6.25183200	0.60249700	Н	-1.85947700	6.25183200	0.60249700
Η	-1.33085700	-2.98970600	1.91787700	Н	-1.33085700	-2.98970600	1.91787700
Η	5.27299900	-1.31424500	-0.80129100	Н	5.27299900	-1.31424500	-0.80129100
Η	3.51561000	-2.31151300	-2.23458400	Н	3.51561000	-2.31151300	-2.23458400
Η	4.70865700	0.56865100	0.72827500	Η	4.70865700	0.56865100	0.72827500
Η	0.88993800	5.97527000	-1.38922100	Н	0.36044827	6.38864382	-1.02393231

Table S3. Cartesian coordinates of QM region atoms for S_0 (enol and keto forms) states for TS-OMe in its ONIOM model, simulated by using the ONIOM-EE(BMK/6-31G(d,p):UFF approach.

	·	enol	0			keto	
N	-0.05415700	0.11222600	-0 33538800	N	-0.04993800	0 10272700	-0.33757400
$\hat{0}$	-0.03922300	5 64523600	0.36610800	0	-0.04370500	5 63533500	0.36632000
Ċ	-1 09347100	-2 05800500	-0 53882800	C	-1 08462400	-2 06914300	-0 54305200
н	-0 13509300	-2 55100400	-0.48023700	н	-0.12513500	-2 55932100	-0 48449200
C	-2 47879900	-0.03298200	-0.51511600	C II	-2 47443100	-0.04716800	-0 51969000
н	-2 56535000	1 04461100	-0.43206200	н	-2 56335000	1 03024800	-0.43666200
C	1 25401200	-0.46885900	-0.7841500	C II	1 25986100	-0.47510200	-0.43000200
0	-2 08038500	-4 16518800	-0.27041300		-2 06685500	-0.47310200	-0.27800700
U Ц	2.00030300	4 55133200	-0.01037000	U Ц	2.00005500	4 56608200	0.05206700
C	-1 18835200	-0.65136800	-0.745764700	C II	-2.93830700 -1.18241200	-0.66280900	-0.95200700
C	-1.18855200	-0.03130800	-0.43704700	C C	-1.18241200	-0.00280900	-0.40117800
C	-0.11000300	1.33490400	-0.18829300	C C	-0.10833200	1.32336000	-0.19012700
C	-0.00199300	4.52416400	1.06251800	C C	-0.00443300	4.51450000	0.11/09400
	-0.5/548500	2.11190900	1.00231800		-0.5/338/00	2.10152000	1.00081400
П	-0.00403200	1.40329800	1.90428300	П	-0.00380700	1.43572000	1.90192400
0 C	5.08016200	-2.05250800	0.03180900	0 C	5.09225500	-2.04254200	0.0308/400
U U	0.16207400	2.33730300	-1.28180800		0.10555500	2.34807300	-1.28309800
Н	0.37782100	1.89407800	-2.24061100	H	0.38114400	1.88599100	-2.24180100
C	-0.33/63/00	3.49195900	1.22069400	C	-0.33963500	3.48133300	1.21982700
H	-0.50184400	3.94144900	2.19197400	H	-0.50484800	3.93042900	2.19118/00
C	0.1/653100	3.75062200	-1.14299400	C	0.1/5/6800	3./41/3900	-1.14352200
H	0.39227700	4.3/560400	-1.99950100	H	0.39133900	4.36/40900	-1.9995/800
C	1.84470100	-1.02852900	-1.41509500	C	1.85484000	-1.03129400	-1.41472300
H	1.28396600	-1.04926700	-2.34746600	H	1.29610600	-1.05346400	-2.34822300
C	3.13264700	-1.58104300	-1.35705300	C	3.14510000	-1.57828100	-1.35491400
H	3.56934100	-2.01274100	-2.25188500	Н	3.58537400	-2.00683300	-2.24951000
С	-3.51531800	-2.22928600	-0.81554300	С	-3.50594300	-2.24588100	-0.82095300
С	-3.59683600	-0.82129700	-0.69775600	С	-3.59057100	-0.83768000	-0.70350100
Η	-4.57952500	-0.35519900	-0.75645900	Η	-4.57405300	-0.37318100	-0.76362200
С	3.24228400	-0.99782000	1.00594700	С	3.24797200	-0.99713800	1.00887500
Η	3.80887500	-0.99094300	1.93325800	Н	3.81303400	-0.98839300	1.93710100
С	-2.22963200	-2.84196300	-0.71794000	С	-2.21871800	-2.85563400	-0.72268100
С	3.83865100	-1.56336900	-0.13976800	С	3.84876800	-1.55895500	-0.13638500
С	1.96381200	-0.45586400	0.93360500	С	1.96744100	-0.46037900	0.93473100
Η	1.50373200	-0.00384500	1.80838800	Η	1.50420100	-0.01069700	1.80903100
С	0.29007700	6.53103400	-0.68415100	С	0.28252600	6.52233900	-0.68387100
Η	0.34463600	7.52330300	-0.23043300	Η	0.33560100	7.51454700	-0.22982600
Η	-0.48053200	6.52732800	-1.46851800	Η	-0.48905900	6.51737200	-1.46727000
Η	1.26736500	6.28953200	-1.12388200	Η	1.25981100	6.28310000	-1.12477300
0	-4.68629100	-4.25747400	-1.18263200	Ο	-4.67317500	-4.27700800	-1.18623800
С	5.73889200	-2.63685800	-1.07346800	С	5.75643400	-2.62126000	-1.06812500
Η	5.89206800	-1.90760000	-1.88160900	Н	5.91189300	-1.88806000	-1.87230500
Η	5.17686000	-3.49408100	-1.47027700	Н	5.19768800	-3.47760800	-1.47127500
Η	6.70677400	-2.97953700	-0.69999100	Н	6.72308800	-2.96431400	-0.69188000
С	-4.69036900	-3.03050800	-1.06929400	С	-4.67884100	-3.04953500	-1.07403600
Η	-5.64101600	-2.46926600	-1.17555700	Н	-5.63047600	-2.49024600	-1.18112600

Table S4. Cartesian coordinates of QM region atoms for S_1 (enol* and keto* forms) states for TS-OMe in its ONIOM model, simulated by using the ONIOM-EE((TD)BMK/6-31G(d,p):UFF approach.

enol* keto*							*
N	-0.06885500	0.10860400	-0.24392600	N	-0.04325000	0.13443200	-0.26714200
0	-0.02806800	5.62633100	0.30588400	0	-0.02823900	5.66800300	0.33441700
Č	-1.14211700	-2.08042200	-0.37761200	Č	-1.08536900	-2.03689700	-0.42227000
H	-0.20655100	-2.56022300	-0.12219600	H	-0.14581200	-2.51120900	-0.17136000
C	-2.50926500	-0.06194500	-0.63285900	C	-2.46344400	-0.01893200	-0.55684300
Н	-2 59949700	1 02064600	-0 64956800	Н	-2 59567200	1.05576700	-0 51957900
C	1 20293700	-0 44122800	-0 31979600	C	1 25513700	-0 44765900	-0.25906300
0	-2.10119900	-4.21339800	-0.63076300	Õ	-2.03752600	-4.16147800	-0.69498800
н	-3.01682100	-4 58135900	-0 82254500	н	-3 63870900	-4 66135400	-0.99239300
C	-1 26406000	-0.66601400	-0 42354600	C	-1 19718200	-0 59313900	-0 42246400
C	-0.10083100	1 50903200	-0 10090800	C	-0.08823200	1 55662200	-0 14224800
C	-0.02931900	4 30771500	0.09865700	C	-0.04286600	4 34581400	0.10774400
C	-0 56100600	2 14012100	1.07237200	C	-0 42457600	2 15422600	1 08108200
н	-0.93347000	1 53287300	1.89211700	н	-0 70463800	1 52589000	1.00100200
$\hat{0}$	4 99639900	-2 10086200	-0 13112400	0	5.06359700	-2 06666500	-0.01634000
Ċ	0 37958900	2 29376500	-1 16987500	Ċ	0 25140100	2 35319700	-1 23880500
н	0.37730700	1 78849400	-2 07156500	н	0.51429200	1 87019800	-2 17641500
C	-0.46188000	3 51552500	1 18945600	C	-0 37079800	3 53503400	1 21374400
н	-0 68698900	4 01214200	2 12093600	н	-0 56100900	4 00516000	2 16895100
C	0.37389200	3 68575900	-1 09877900	C	0.25360800	3 74791800	-1 12987800
н	0.37369200	4 27594000	-1 94427200	н	0.2000000	4 35580100	-1 98788700
C	1 63996700	-1 27013700	-1 38733600	C	1 76586000	-1 13098600	-1 37179800
Н	0.96682900	-1 45352800	-2.22117600	Н	1 15358800	-1 22226900	-2.26686600
C	2 92285800	-1 81371400	-1 37835700	C	3 05140600	-1 68952100	-1 33686800
н	3 25817300	-2 40635500	-2 22222100	н	3 43463300	-2 20143600	-2 21333600
C	-3 53612400	-2 29585800	-0 87784300	C	-3 50475800	-2 27896200	-0.86235800
C	-3 63648100	-0.87198300	-0.82945900	C	-3 57226600	-0.87682900	-0.77373400
Н	-4 61321000	-0.41688600	-0.97340900	Н	-4.55069000	-0.41157400	-0.89513100
C	3 31672800	-0.81960700	0.83117000	C	3 30061600	-0.90171800	0.96020700
Н	3 97497800	-0 70580800	1 68893100	Н	3 91584100	-0.83557200	1 85383900
C	-2 24884600	-2 88907600	-0 63214400	C	-2 20421300	-2 91239100	-0 66982600
C	3.76760100	-1.60748100	-0.26111200	C	3.82428600	-1.57833400	-0.16570900
C	2.08641600	-0 20419900	0.77653200	C	2.04167000	-0 32450100	0.90415600
Н	1 73333900	0.40818100	1 60258500	Н	1 63866200	0.21469500	1 75786400
C	0 34884800	6 49734800	-0 74682400	C	0 32064200	6 54134100	-0 72145600
Н	0.34571700	7.50013900	-0.31569700	Н	0.35587400	7.53977000	-0.28062800
Н	-0 37218000	6 44820500	-1 57425700	Н	-0.43132100	6 51892300	-1 52298000
Н	1 35770300	6 27136900	-1 11462800	Н	1 31024500	6 30125300	-1 13277500
0	-4 56770100	-4 42785200	-1 17459000	0	-4 58306100	-4 42524700	-1 17237000
Č	5 54537300	-2.89580000	-1 17029700	Č	5 66776900	-2.74326500	-1 10283700
н	5 59692800	-2 33367900	-2 11075300	н	5 76992000	-2 08431700	-1 97563800
Н	4 95054800	-3 80637500	-1 32263800	Н	5 08965800	-3 63238400	-1 39071300
Н	6 55129600	-3 16005500	-0.83855300	Н	6 65661100	-3 04762000	-0 75265700
C	-4 64705700	-3 16609200	-1 16939000	C	-4 63463300	-3 09130900	-1 12615500
Ч	-5 60635200	-2 67414000	-1 41070800	ч	-5 61612100	-2 66067100	-1 30461200
11	5.00055200	2.07714000	1.710/0000	11	5.01012100	2.00007100	1.30-01200

Table S5. Key Geometry parameters calculated by (TD)BMK/6-31G(d,p)+PCM method in acetonitrile solution and by ONIOM-EE((TD)-BMK/6-31G(d,p):UFF) method in aggregated crystal for both TS and TS-OMe. Dihedral angles are in degrees (θ°) and bond lengths are in Angstrom (Å), and relative energies are in kcal·mol⁻¹. The 0.0 kcal·mol⁻¹ (ΔE) is chosen as zero point of energy for the lower minimum in either S₀ or S₁ states, separately.

			AE(opt)		
structure		θ	R(H1-O1)	R(H1-O2)	ΔE (opt)
			in solution		
	Е	154.90	0.98	1.78	0.0
TS	E^{*}	121.36	0.99	1.66	0.0
	\mathbf{K}^{*}	105.50	1.57	1.01	3.1
	E	-160.21	0.98	1.78	0.0
TS-OMe	TS-OMe E [*] -103.2		1.00	1.64	0.0
	K^*	-98.77	1.55	1.02	2.6
			in crystal		
TS	E	-162.24	0.98	1.77	0.0
	E^{*}	-142.36	1.00	1.66	0.0
	K^*	-152.74	1.69	0.99	2.6
TS-OMe	Е	-177.07	0.98	1.75	0.0
	E^{*}	-171.72	1.01	1.60	1.7
	K [*]	-174.59	1.70	0.99	0.0

Table S6. Calculated absorption and emission wavelength (λ , nm) for the TS and TS-OMe monomers and dimers in crystal in comparison with experimentally measured wavelength. The corresponding Stokes shifts (nm) in both calculation and experiment are compared.

atmiatura		Cal.			Expt			
suucture		absorption	emission	Stokes	absorption	emission	Stokes	
ΤS	monomer	315	380	65	366	493	127	
15	dimer	337	456	119	300			
TS-OMe	monomer	292	457	165	267	522	166	
	dimer	292	459	167	307	333	100	

Table S7. Decomposition interaction energies calculated by the EDA-FF approach for the representative dimers of TS and TS-OMe in crystal. The energy unit is kJ/mol.

TS	Elec.	Rep.	Disp.	Total	TS-OMe	Elec.	Rep.	Disp.	Total
dimer1	-0.96	28.63	-43.76	-16.09	dimer1	-18.73	62.55	-100.99	-57.18
dimer2	-4.51	46.41	-77.74	-35.83	dimer2	-7.85	50.82	-74.64	-31.67
dimer3	-0.15	22.16	-40.28	-18.27	dimer3	-6.95	46.05	-69.82	-30.72
dimer4	-6.03	45.76	-54.96	-15.23	dimer4	-6.86	14.76	-29.60	-21.69
dimer5	-4.63	14.40	-23.77	-14.00	dimer5	-11.22	45.57	-84.87	-50.51
dimer6	-1.72	22.68	-44.62	-23.65	dimer6	-19.00	20.02	-35.56	-34.55
dimer7	-4.57	35.92	-68.61	-37.26	dimer7	-6.65	14.13	-28.90	-21.42
dimer8	-13.4	47.84	-74.06	-39.61	dimer8	-3.43	22.26	-27.02	-8.19
dimer9	-4.73	13.83	-23.99	-14.89					

Fig. S1 The experimentally measured emission spectra in acetonitrile/water mixtures with f_w of 0% (in solution) and 99% (in aggregation), respectively for TS (left panel) and TS-OMe (right panel).²³

Fig. S2 The geometries of all the representative dimers of TS in crystal.

Fig. S3 The geometries of all the representative dimers of TS-OMe in crystal.

Fig. S4 Three different dimeric structures in the QM region optimized from ONIOM approach in crystal (a) TS and (b) TS-OMe.

Fig. S5 Calculated C-H···O hydrogen bonds and $\pi \cdots \pi$ interactions with signed distances (Å) between the two E-formed TS monomers within the EE (upper panel in S₀ state) and EE* (lower panel in S₁ state) dimers in the QM region.