Mitoxantrone dihydrochloride, an FDA approved drug, binds with SARS-CoV-2 NSP1 Cterminal

Prateek Kumar ${ }^{1 \#}$, Taniya Bhardwaj ${ }^{1 \#}$, and Rajanish Giri ${ }^{1 *}$

${ }^{1}$ Indian Institute of Technology Mandi, School of Basic Sciences, VPO Kamand, Himachal Pradesh 175005, India
*Correspondence: Dr. Rajanish Giri, School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh 175005, India. Email: rajanishgiri@iitmandi.ac.in. Telephone number: 01905-267134, Fax number: 01905-267138

Supplementary Information

Supplementary Figure 1A: Two-dimensional structures of top identified compounds similar to Mitoxantrone from PubChem database with docking score more than $-5.3 \mathrm{kcal} / \mathrm{mol}$.

title: 153160

title: 25000768

title: 68040943

title: 59825360

title: 433060
title: 59835315

title: 11583587

title: 59229103

title: 44541201

title: 126805
title: 59863202

title: 70408715

title: 13032841

title: 44275839

Supplementary Figure 1B: Two-dimensional structures of top identified compounds similar to Mitoxantrone from PubChem database with docking score more than $-5.3 \mathrm{kcal} / \mathrm{mol}$.

 title: 9543511	 title: 10412525	 title: 44541200
 title: 16072884	 title: 10434945	 title: 11305298
 title: 153160	 title: 59835315	 title: 25000768
 title: 11583587	 title: 68040943	 title: 13032841
 title: 44275839	 title: 433060	 title: 126805

Supplementary Figure 2: Two-dimensional structures of top identified conformers similar to Mitoxantrone from PubChem database with docking score more than $-5.3 \mathrm{kcal} / \mathrm{mol}$.

NSP1_CTR-88654295

NSP1_CTR-68831420

NSP1_CTR-57191222

Supplementary Figure 3A: Three-dimensional binding poses and two-dimensional interaction diagrams of top identified compounds similar to Mitoxantrone from PubChem database with docking score more than $-5.3 \mathrm{kcal} / \mathrm{mol}$.

NSP1_CTR-88743425

NSP1_CTR-68829308

Supplementary Figure 3B: Three-dimensional binding poses and two-dimensional interaction diagrams of top identified compounds similar to Mitoxantrone from PubChem database with docking score more than $-5.3 \mathrm{kcal} / \mathrm{mol}$.

NSP1_CTR-10412525

NSP1_CTR-44541200

Supplementary Figure 4A: Three-dimensional binding poses and two-dimensional interaction diagrams of top identified conformers similar to Mitoxantrone from PubChem database with docking score more than $-5.3 \mathrm{kcal} / \mathrm{mol}$.

NSP1_CTR-16072884

NSP1_CTR-10434945

Supplementary Figure 4B: Three-dimensional binding poses and two-dimensional interaction diagrams of top identified conformers similar to Mitoxantrone from PubChem database with docking score more than $-5.3 \mathrm{kcal} / \mathrm{mol}$.

Supplementary Figure 5: Molecular dynamics simulation analysis of MTX bound NSP1-CTR using OPLS 2005 forcefield: (A) RMSD, Rg , of C -alpha ($\mathrm{C} \alpha$) atoms and hydrogen bonds (from up to down), (B) RMSF analysis of C-alpha atoms, (C) Timeline representation of each residue of forming helical and beta sheets in respective frame of one microsecond long simulation trajectory. (D) Total secondary structure element ($\% \mathrm{SSE}$) is shown for each residue during entire simulation period. The orange color shows helical region and cyan shows the beta sheets.

500ns

1000 ns

Supplementary Figure 6: Snapshots of NSP1-CTR and MTX complex from Desmond simulation trajectory: Three-dimensional binding poses and two-dimensional interaction diagrams are shown for captured frames at a regular interval of 250 ns .

Supplementary Figure 7: Molecular dynamics simulation analysis of MTX bound NSP1-CTR using GROMOS 54A7 forcefield: (A) RMSD, Rg, and RMSF (from up to down), (B) hydrogen bonds analysis, (C) Eigenvector vs Eigenvalue plot, and (D) principal component analysis of last 20 ns simulation trajectory.

Supplementary Figure 8: Timeline representation of secondary structure change in NSP1-CTR during 500 ns long simulation trajectory. The colors are illustrated within the figure.

100 ns

400 ns

200 ns

500 ns

Superimposed Binding

Supplementary Figure 9: Snapshots of NSP1-CTR and MTX complex from Gromacs simulation trajectory: Two-dimensional interaction diagrams are shown for captured frames at a regular interval of 100 ns . The corresponding three-dimensional poses are superimposed.

Supplementary Figure 10: Absorption spectra of NSP1-CTR in absence and presence of MTX at two concentrations $(31 \mu \mathrm{M}$ and $300 \mu \mathrm{M})$ representing two major peaks around 660 nm and 610 nm corresponding to monomer and dimer forms, respectively.

Supplementary Table 1: Detailed list of changes in τ_{1}, τ_{2}, and τ_{3} components of tryptophan lifetime of NSP1 due to increasing concentration of mitoxantrone.

Mitoxantrone Concentration $(\boldsymbol{\mu} \mathbf{M})$	$\tau_{1} \pm \boldsymbol{s}(\mathbf{n s})$	$\tau_{2} \pm \boldsymbol{s}(\mathbf{n s})$	$\tau_{3} \pm \boldsymbol{s}(\mathbf{n s})$
$\mathbf{0}$ $(\mathbf{O n l y}$ NSP1-CTR; 7.5 $\boldsymbol{\mu} \mathbf{M})$	2.42 ± 0.10	0.61 ± 0.02	5.28 ± 0.04
$\mathbf{2 5}$	2.31 ± 0.06	5.12 ± 0.06	0.63 ± 0.02
$\mathbf{5 0}$	2.23 ± 0.08	5.02 ± 0.05	0.59 ± 0.02
$\mathbf{1 0 0}$	2.26 ± 0.08	4.96 ± 0.06	0.62 ± 0.02
$\mathbf{2 0 0}$	2.24 ± 0.08	4.91 ± 0.06	0.58 ± 0.01

Supplementary Table 2: Docking scores of top identified compounds similar to Mitoxantrone from PubChem database with docking score more than $-5.3 \mathrm{kcal} / \mathrm{mol}$.

S. No.	PubChem ID	Docking score (kcal/mol)	MM-GBSA (kcal/mol)
SC1	$\mathbf{8 8 6 5 4 2 9 5}$	-6.93	-49.28
SC2	$\mathbf{6 8 8 3 1 4 2 0}$	-6.66	-43.76
SC3	$\mathbf{5 7 1 9 1 2 2 2}$	-6.34	-53.37
SC4	$\mathbf{8 8 7 4 3 4 2 5}$	-6.17	-42.06
SC5	$\mathbf{6 8 8 2 9 3 0 8}$	-6.10	-48.03
SC6	$\mathbf{1 5 3 1 8 2}$	-6.08	-54.47
SC7	$\mathbf{2 0 2 3 1 4 4 9}$	-6.06	-43.61
SC8	$\mathbf{4 4 4 1 7 7 4 2}$	-6.03	-48.63
SC9	$\mathbf{1 4 3 2 7 2 6 6 0}$	-6.01	-52.19
SC10	$\mathbf{1 3 9 6 5 9 3 5 4}$	-5.98	-56.79
SC11	$\mathbf{4 4 5 4 1 3 4 3}$	-5.86	-50.88
SC12	$\mathbf{1 0 4 1 2 5 2 5}$	-5.79	-57.66
SC13	$\mathbf{4 4 5 4 1 2 0 0}$	-5.79	-45.10
SC14	$\mathbf{1 6 0 7 2 8 8 4}$	-5.77	-47.02
SC15	$\mathbf{6 8 8 5 9 2 3 5}$	-5.74	-40.43
SC16	$\mathbf{1 0 4 3 4 9 4 5}$	-5.71	-43.93
SC17	$\mathbf{1 1 9 9 4 2 6 0}$	-5.66	-32.52
SC18	$\mathbf{1 1 3 0 5 2 9 8}$	-5.66	-46.99
SC19	$\mathbf{1 5 3 1 6 0}$	-5.65	-54.15
SC20	$\mathbf{5 9 8 3 5 3 1 5}$	-5.59	-51.32

SC21	$\mathbf{5 9 8 6 3 2 0 2}$	-5.56	-42.39
SC22	$\mathbf{2 5 0 0 0 7 6 8}$	-5.54	-51.98
SC23	$\mathbf{1 1 5 8 3 5 8 7}$	-5.53	-47.93
SC24	$\mathbf{7 0 4 0 8 7 1 5}$	-5.53	-57.73
SC25	$\mathbf{6 8 0 4 0 9 4 3}$	-5.53	-49.75
SC26	$\mathbf{5 9 2 2 9 1 0 3}$	-5.44	-50.79
SC27	$\mathbf{1 3 0 3 2 8 4 1}$	-5.43	-52.94
SC28	$\mathbf{5 9 8 2 5 3 6 0}$	-5.43	-56.50
SC29	$\mathbf{4 4 5 4 1 2 0 1}$	-5.43	-57.92
SC30	$\mathbf{4 4 2 7 5 8 3 9}$	-5.39	-45.53
SC31	$\mathbf{4 3 3 0 6 0}$	-5.38	-48.97
SC32	$\mathbf{1 2 6 8 0 5}$	-5.35	-37.98

Supplementary Table 3: Docking scores of top identified conformers similar to Mitoxantrone from PubChem database with docking score more than $-5.3 \mathrm{kcal} / \mathrm{mol}$.

S. No.	PubChem ID	Docking score (kcal/mol)	MM-GBSA (kcal/mol)
SF1	$\mathbf{9 5 4 3 5 1 1}$	-6.104	-51.061
SF2	$\mathbf{1 0 4 1 2 5 2 5}$	-5.794	-57.658
SF3	$\mathbf{4 4 5 4 1 2 0 0}$	-5.786	-45.099
SF4	$\mathbf{1 6 0 7 2 8 8 4}$	-5.769	-47.023
SF5	$\mathbf{1 0 4 3 4 9 4 5}$	-5.705	-43.93
SF6	$\mathbf{1 1 3 0 5 2 9 8}$	-5.659	-46.986
SF7	$\mathbf{1 5 3 1 6 0}$	-5.647	-54.154
SF8	$\mathbf{5 9 8 3 5 3 1 5}$	-5.589	-51.32
SF9	$\mathbf{2 5 0 0 0 7 6 8}$	-5.535	-51.981
SF10	$\mathbf{1 1 5 8 3 5 8 7}$	-5.534	-47.927
SF11	$\mathbf{6 8 0 4 0 9 4 3}$	-5.527	-49.748
SF12	$\mathbf{1 3 0 3 2 8 4 1}$	-5.426	-52.943
SF13	$\mathbf{4 4 2 7 5 8 3 9}$	-5.389	-45.53
SF14	$\mathbf{4 3 3 0 6 0}$	-5.384	-48.973
SF15	$\mathbf{1 2 6 8 0 5}$	-5.348	-37.976

Supplementary Movie 1: Simulation trajectory of one microsecond long NSP1-CTR in complex with MTX using OPLS 2005 forcefield in Desmond simulation package.

