Supporting Information for:

NTCDA/g-C₃N₄ Van der Waal heterojunctions exhibit enhanced photochemical H_2O_2 production and antimicrobial activity.

John H. Thurston^{a*}, Molly Vitale-Sullivan^a, Azhar Koshkimbayeva^a, Tyler R Smith^b and Kenneth A. Cornell^b

a: Department of Chemistry, The College of Idaho, Caldwell, ID, 83605

b: Department of Chemistry and Biochemistry, Boise State University, Boise ID, 83725

Figure S1: Survey XPS scans of samples of CN and the heterojunction composition 5N/CN.

Figure S2: Kinetic traces of photochemical production of H_2O_2 by different NTCDA/CN heterojunction compositions. The tested catalyst compositions contain 0 mg (black), 1 mg (purple), 2.5 mg (blue), 5 mg (green), 7.5 mg (yellow) and 10 mg (red) NTCDA. A control trial of pure NTCDA (no CN) is represented with cross-hatched circles.

Figure S3: Comparison of FT-IR spectra obtained for samples of 5N/CN heterojunctions that were subjected to visible radiation (black trace) or stirred in the dark (grey trace). The inset image details the NTCDA $v_{C=0}$ vibration for both samples.

Figure S4: Observed ability of NTCDA/CN heterojunctions to repeatedly generate H_2O_2 under visible radiation without a significant loss of activity. Experimental conditions: 0.83 g catalyst/L, 10% aqueous glycerol, 270 W irradiation ($\lambda \ge 400$ nm). The catalyst sample was recovered by centrifugation (5 min, 7500 rpm) prior to recycling for subsequent trials.

Figure S5: (A) Excitation analysis of NTCDA to identify the HOMO-LUMO transition energy. The wavelength λ = 368 nm corresponds to a transition energy of 3.37 eV. (B) Valence band XPS spectra for samples of pure NTCDA.

Fig S6: Enhanced visible radiation-induced electron accumulation by composite NTCDA/CN heterojunctions. The presented samples are (A) 5N/CN and (B) pure CN. Experimental conditions: 1g catalyst/L, degassed 10% aqueous glycerol, 270 W irradiation ($\lambda \ge 400$ nm), N₂ atmosphere, 0.5 hour total irradiation period.