## Effects of the Hubbard U correction on the electronic and magnetic properties of tetragonal ${}^{V_2P_2}$ sheet

Yusuf Zuntu Abdullahi<sup>a1,</sup> Sohail Ahmad<sup>b</sup> Abdullahi Abdu Ibrahim<sup>c</sup>

<sup>a</sup>Department of Physics, Faculty of Science, Kaduna State University, P.M.B. 2339 Kaduna State, Nigeria.

<sup>b</sup>Department of Physics, College of Science, P O Box 9004, King Khalid University, Abha, Saudi Arabia.

<sup>c</sup>Computer Engineering Department, Altinbas University, Istanbul, Turkey.



Fig. S1 Total energy of  $V_2P_2$  sheet as function of Monkhorst-pack (Left) and wave function cutoffs (Right).



Fig. S2 The E-k points closed to the CBM and VBM plots for  $V_2P_2$  sheet.

<sup>1</sup>Corresponding author.

Email address: yusufzuntu@gmail.com



Fig. S3. The electronic band structure using the HSE functional for  $t \cdot V_2 P_2$  sheet.



**Fig. S4.** The phonon dispersions curves obtained using the (a) PBE and (b) PBE+U for  $t \cdot V_2 P_2$  sheet

| <b>Table S1</b> The atomic positions and lattice constant for the tetragonal $V_2P_2$ sheet. |
|----------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------|

| System | L (Å)           | Atomic positions                        |  |  |
|--------|-----------------|-----------------------------------------|--|--|
|        | a = b = 3.160 Å | V -0.004719727 1.576723644 12.119697907 |  |  |
| PBE    |                 | V 1.576723022 -0.004719159 13.727120004 |  |  |
|        |                 | P -0.004134114 1.576138120 14.611705249 |  |  |
|        |                 | P 1.576138501 -0.004134923 11.235097521 |  |  |
|        | a = b = 3.360 Å | V 0.012684338 1.692784585 6.511549618   |  |  |
| PBE+U  |                 | V 1.692784599 0.012685324 8.488466319   |  |  |
|        |                 | P 0.012602591 1.692851786 9.193939943   |  |  |
|        |                 | P 1.692850606 0.012603159 5.806043166   |  |  |

**Table S2** The atomic positions and lattice constant for the orthorhombic  $V_2P_2$  sheet.

| System | L (Å)        | Atomic positions                      |  |  |
|--------|--------------|---------------------------------------|--|--|
|        | a = 3.886  Å | V 1.942844987 0.000129200 7.986247063 |  |  |
| PBE    | b = 2.815  Å | V 3.885580301 2.815611839 9.484710693 |  |  |

| P 0.000040889 | 1.407861710 | 7.409172058  |
|---------------|-------------|--------------|
| P 1.942767501 | 1.407879472 | 10.061764717 |

**Table S3:** Relative energies (eV) between orthorhombic  $({}^{E_0})$  and tetragonal  $({}^{E_T}) {}^{V_2 P_2}$  sheet.

| Sheet    | $E_T - E_T$ | $E_O - E_T$ |
|----------|-------------|-------------|
| $V_2P_2$ | 0           | 0.911       |

**Table S4:** The calculated carrier effective mass  $(m^*)$  for tetragonal  $V_2P_2$  sheet.

| Sheet    | Carrier | $m^{*}/m_{0}$ |
|----------|---------|---------------|
| $V_2P_2$ | h       | 3.162         |
|          | е       | 2.656         |

**Table S5.** Geometry and electronic structure for  $V_2P_2$  with adsorbed Li, Na, K, Ge, and Si atoms. The favorable adsorption site (Ads. Site) for Li, Na, K, Ge, and Si atoms on the  $T_V, T_V, T_V, T_H$  and  $T_H$  sites respectively.  $T_V$  and  $T_H$  represent top of the V atom and hollow sites on (2x2) supercell of the  $V_2P_2$  sheet. X refers to an adsorbate species.  $E_{ads}$ ,  $d_{V_2P_2-X}$  refer to adsorption energy and averaged bond length between  $V_2P_2$  sheet and the adsorbates.  $M_{cell}$  stands for magnetic moment per unit cell. *EC* refers to the electronic character of the  $V_2P_2$  with adsorbates. In the present systems, the *EC* is found to be metallic (M).

| System | Ads. Site | E <sub>ads</sub> | $d_{V_2P_2-X}$ | M <sub>cell</sub> | EC    |
|--------|-----------|------------------|----------------|-------------------|-------|
|        |           | (eV)             | (Å)            | $(\mu_{ m B})$    |       |
| Li     | $T_V$     | 2.40             | 2.51           | 0.50              | Metal |
| Na     | $T_V$     | 1.87             | 2.84           | 1.00              | -     |
| K      | $T_V$     | 1.94             | 3.23           | 1.00              | -     |
| Ge     | $T_{H}$   | 3.53             | 2.35           | 0.00              | -     |
| Si     | $T_{H}$   | 4.02             | 2.24           | 0.00              | -     |