Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Optimization and characterization of biosurfactant produced by indigenous

Brevibacillus borstelensis isolated from a low permeability reservoir for

application in MEOR

Hao Dong¹, Anying Zheng², Yanlong He³, Xiaotong Wang⁴, Yang Li², Gaoming

Yu², Yongan Gu², I.M.Banat⁵, Shanshan Sun², Yuehui She^{2,*}, Fan Zhang^{7,*}

¹College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou

434023, China

²College of Petroleum Engineering, Yangtze University, Wuhan, Hubei 430010, China

³College of Petroleum Engineering, Xi'an Shiyou University, Xi'an 710065, China

⁴State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial

Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy

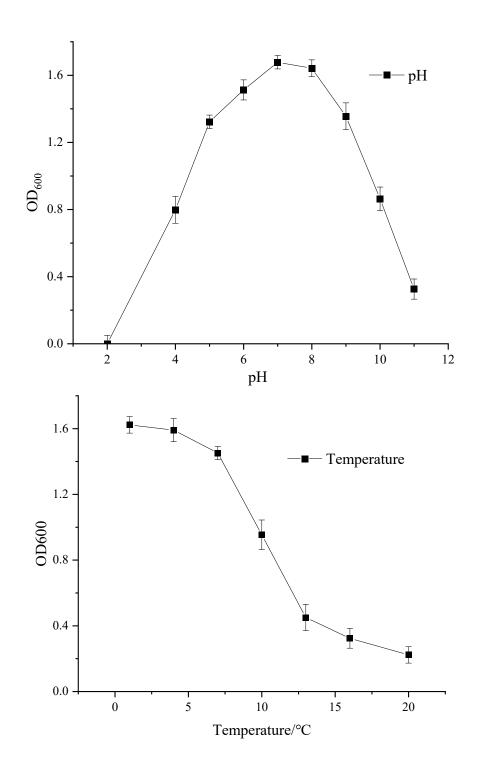
of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences,

Beijing 100049, PR China

⁵Faculty of Life and Health Sciences, School of Biomedical Sciences, University of

Ulster, Northern Ireland, UK

⁶The Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Accumulation


Mechanism, Ministry of Education, College of Energy Resources, China University of

Geosciences (Beijing), Beijing 100083, China

* Correspondence: *Corresponding author.

E-mail: sheyuehui@163.com, fanzhang123@126.com

The following are the Supplementary data to this article:

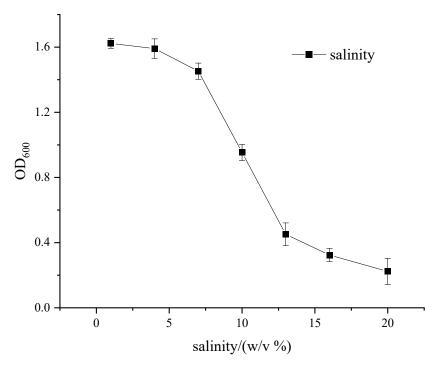


Figure S₁ The effect of pH, temperature, salinity on the growth of strain YZ-2

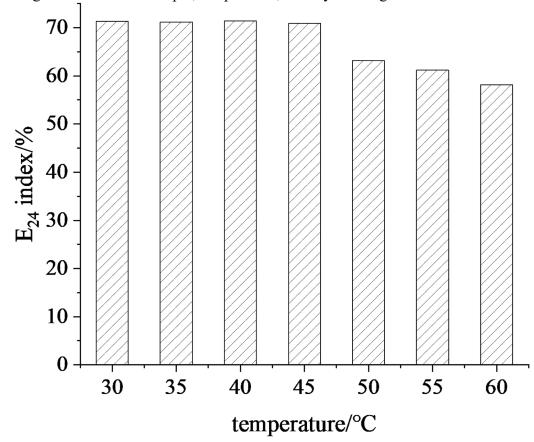


Figure S2 Effect of temperature on emulsifying activity of biosurfactant produced by YZ-2 (kerosene)

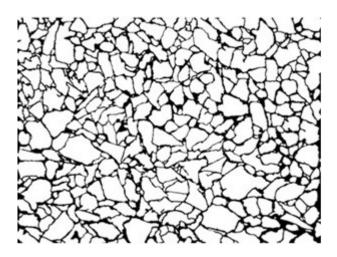


Figure S3 Micrograph of rock core and micro-glass model

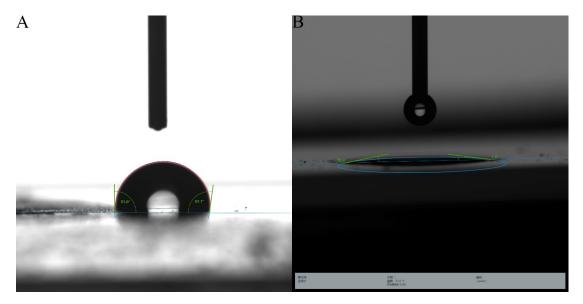


Figure S4 A: the contact angle of water on the oil aged glass surface; B the contact angle of biosurfactant solution on the glass surface which was treated by biosurfactant solution after oil aged.

Table S1 The parameters of the cores

	Size (mm)	Diameter(mm)	Length(mm)	permeability/10 ⁻ ³ µm ²	porosity/%	
core A	25.0×72.4	25	72.4	47.54	9.89	
core B	25.0×70.4	25	70.4	42.32	8.46	
core C	25.0×69.3	25	69.3	45.33	9.04	
core D	25.0×72.6	25	72.6	46.22	9.33	

Table S2 Crude oil properties

Degassed oil viscosity	Degassed oil density	SARA content (weight percent)					
at 30°C	at 30°C						
		Saturate	Aromatic	Resin	Asphaltene		
7.69 mPa.s	0.8559	63.2	24.7	10.2	1.9		

Table S3 Ion composition of formation water

Ion	Na^+	Mg^{2+}	Ca^{2+}	K^+	CO ₃ ² -	Cl-	NO ₃ -	HCO ₃ -
Concentration(mg/L)	1271.56	16.71	29.58	4.15	201.24	523.56	3.7	947.71