SUPPORTING INFORMATION

Cu(OAc)₂ Catalysed Aerobic Oxidation of Aldehydes to Nitriles under Ligand-Free Condition

Asit Kumar Das^a, Sneha Nandy^b and Sanjay Bhar^{b,*}

^a Department of Chemistry, Krishnath College, Berhampore, Murshidabad, 742101, India.

^b Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India.

[E-mail: sanjaybharin@yahoo.com, sanjay.bhar@jadavpuruniversity.in]

Experimental Section

Materials and methods

All reactants were purchased from SRL, AVRA Chemicals, Alfa-aesar, Spectrochem, and Sigma Aldrich and used as received without further purification. ¹H and ¹³C NMR spectra were obtained on a Bruker-300 spectrometer (300 MHz and 400 MHz) and JEOL Spectrometer (500 MHz) in CDCl₃ and DMSO- d_6 solutions with TMS as an internal reference. Melting points were determined in open capillary on electrical bath which is uncorrected. Column chromatography was performed on silica gel (60-120 mesh) from SRL, India. Thin layer chromatographic separations were performed on pre-coated silica gel plates using silica gel G for TLC (E. Merck).

General experimental procedure for the Cu(OAc)₂ catalyzed oxidative transformation of aldehydes to nitriles:

To a stirred suspension of aldehyde 1 (1.0 mmol) and ammonium acetate (1.5 mmol) in DMSO (3 mL), $Cu(OAc)_2$ (10 mol %) was added. The reaction mixture was stirred for an appropriate time at 60°C under ambient atmosphere. The progress of the reaction was monitored with TLC. Then the reaction mixture was cooled to room temperature, ethyl acetate (15 mL) was

added to dissolve the product. The reaction mixture was repeatedly extracted with ethyl acetate $(3\times5 \text{ mL})$. The combined organic extracts were washed with water $(3\times5 \text{ mL})$ and dried over anhydrous Na₂SO₄. The crude product **2** was obtained by removal of the solvent under reduced pressure which was further purified by column chromatography on a short column of silica gel using 1-10% ethyl acetate-hexane as eluent.

Procedure for the Cu(OAc)₂ catalyzed gram-scale synthesis of nitrile (2a):

To a stirred suspension of 4-methoxybenzaldehyde **1a** (20.0 mmol, 2.723 g) and ammonium acetate (30.0 mmol, 2.310 g) in DMSO (60 mL), $Cu(OAc)_2$ (0.336 g, 10 mol %) was added and the reaction mixture was stirred for the appropriate time at 60°C under ambient atmosphere. The progress of the reaction was monitored with TLC. Then the reaction mixture was cooled to room temperature, ethyl acetate (300 mL) was added to dissolve the product. The reaction mixture was repeatedly extracted with ethyl acetate (3×100 mL). The combined organic extracts were washed with water (3× 100 mL). After drying with anhydrous sodium sulfate, the solvent was removed under reduced pressure to furnish the crude product **2a**, which was further purified by column chromatography of silica gel using ethyl acetate-hexane as eluent. (Yield: 89%, 2.370 g).

Determination of Reaction Order:

To determine the order of the reaction, two identical experiments were carried out following the general procedure varying only the concentration of 4-methoxybenzaldehyde **1a**. The initial rate of the reaction for the different run was calculated to determine the order with respect to aldehyde **1a**.

Run	4-methoxybenzaldehyde 1a	NH ₄ OAc	Cu(OAc) ₂	DMSO
Run 1	1 mmol	1.5 mmol	10 mol%	3 mL
Run 2	2 mmol	1.5 mmol	10 mol%	3 mL

Table S1 Experimental details to determine the reaction order

Figure S1 Dependence of [4-methoxybenzaldehyde] on the initial rate of the reaction using $Cu(OAc)_2$ (10 mol%), NH₄OAc (1.5 mmol), DMSO (3 mL), 60°C, under ambient condition.

Initial slope for Run 1 at 60 minutes = $0.0135 = 13.5 \times 10^{-3} \text{ (mM)/min}$

Initial slope for Run 2 at 60 minutes = $0.0269 = 26.9 \times 10^{-3} \text{ (mM)/min}$

Simplified rate equation for this system (r) = k [4-methoxybenzaldehyde]^a [NH₄OAc]^b [Cu(OAc)₂]^c [DMSO]^d (all terms have their usual significance)

Now for Run 1, $r_1 = 13.5 \times 10^{-3} \text{ (mM)/min} = k [1]^a [NH_4OAc]^b [Cu(OAc)_2]^c [DMSO]^d$(1)

Now for Run 2, $r_2 = 26.9 \times 10^{-3} \text{ (mM)/min} = k [2]^a [NH_4OAc]^b [Cu(OAc)_2]^c [DMSO]^d$(2)

Comparing the initial rate,

$$r_1/r_2 = (13.5/26.9) = (1/2)^a$$

or, 0.502 = 0.5^a
or, log 0.502 = a log 0.5
or, a = log 0.502 / log 0.5
or, a = -0.299 / -0.301
or, a = 0.99 ~ 1

So, Rate = k [4-methoxybenzaldehyde]¹

The kinetic studies showed that the reaction rate depends on the concentration of 4methoxybenzaldehyde **1a** only. Therefore, the aforesaid oxidative protocol follows first order kinetics.

Spectral and analytical data of the compounds:

4-methoxybenzonitrile (2a)¹: Yield: 90%; White solid; Mp 57-59 ⁰C (Lit.¹⁰ 58-60 ⁰C); ¹H NMR (CDCl₃, 300 MHz); δ (ppm): 7.57 (2H, d, *J* = 8.4 Hz); 6.93 (2H, d, *J* = 8.4 Hz); 3.84 (3H, s). ¹³C NMR (CDCl₃, 75 MHz); δ (ppm): 159.3, 131.5, 119.6, 117.1, 114.0, 56.1.

4-tolunitrile (2b)¹: Yield: 91%; Colorless liquid; ¹H NMR (CDCl₃, 300 MHz); δ (ppm): 7.50 (2H, d, *J* = 7.8 Hz); 7.24 (2H, d, *J* = 7.8 Hz); 2.38 (3H, s). ¹³C NMR (CDCl₃, 75 MHz); δ (ppm): 145.1, 132.6, 128.9, 119.8, 111.6, 22.5.

2-tolunitrile (2c)¹: Yield: 89%; Colorless liquid; ¹H NMR (CDCl₃, 300 MHz); δ (ppm): 7.44-7.59 (2H, m); 7.23-7.31 (2H, m); 2.53 (3H, s). ¹³C NMR (CDCl₃, 75 MHz); δ (ppm): 141.9, 132.6, 132.4, 130.2, 126.2, 118.1, 112.7, 20.4.

Benzonitrile (2d)²: Yield: 90%; Colorless liquid; ¹H NMR (CDCl₃, 300 MHz); δ (ppm): 7.57-7.64 (3H, m); 7.43-7.48 (2H, m). ¹³C NMR (CDCl₃, 75 MHz); δ (ppm): 133.9, 133.1, 129.6, 119.5, 113.4.

3, 4-dimethoxybenzonitrile (2e)²: Yield: 90%; White solid; Mp 70-72 ⁰C (Lit.¹⁰ 69-71 ⁰C); ¹H NMR (CDCl₃, 300 MHz); δ (ppm): 7.24 (1H, d, *J* = 1.5 Hz); 7.04 (1H, s); 6.87 (1H, d, *J* = 8.1 Hz); 3.94 (3H, s); 3.90 (3H, s). ¹³C NMR (CDCl₃, 75 MHz); δ (ppm): 152.8, 149.4, 126.5, 119.1, 113.8, 111.2, 103.6, 56.0, 55.8.

4-hydroxy-3-methoxybenzonitrile (2f)³: Yield: 89%; White solid; Mp 88-90 ⁰C (Lit.¹⁰ 87-89 ⁰C); ¹H NMR (CDCl₃, 300 MHz); δ (ppm): 7.19 (1H, d, *J* = 7.5 Hz); 7.06 (1H, s); 6.92 (1H, d, *J* = 7.8 Hz); 3.89 (3H, s). ¹³C NMR (CDCl₃, 75 MHz); δ (ppm): 150.1, 146.8, 127.5, 119.3, 113.9, 109.0, 103.1, 56.2.

4-hydroxybenzonitrile (2g)³: Yield: 87%; White solid; Mp 110-112 ⁰C (Lit.¹⁰ 111-112 ⁰C); ¹H NMR (CDCl₃, 300 MHz); δ (ppm): 7.54 (2H, d, J = 8.4 Hz); 6.94 (2H, d, J = 8.4 Hz). ¹³C NMR (CDCl₃, 75 MHz); δ (ppm): 160.5, 134.3, 119.3, 116.5, 102.7.

3-hydroxybenzonitrile (2h)⁴: Yield: 89%; White solid; Mp 79-81 ⁰C; ¹H NMR (DMSO-d₆, 300 MHz); δ (ppm): 7.28-7.33 (2H, m); 7.19 (1H, s); 7.09-7.17 (1H, m). ¹³C NMR (DMSO-d₆, 75 MHz); δ (ppm): 156.5, 131.2, 124.7, 121.2, 119.5, 117.8, 110.4.

2-hydroxybenzonitrile (2i)³: Yield: 88%; White solid; Mp 97-99 ⁰C (Lit.¹¹ 96-98 ⁰C); ¹H NMR (CDCl₃, 300 MHz); δ (ppm): 7.48-7.51 (2H, m); 6.95-6.98 (2H, m); 4.89 (1H, br s). ¹³C NMR (CDCl₃, 75 MHz); δ (ppm): 158.8, 134.7, 132.9, 120.7, 119.1, 116.7, 102.8.

4-(dimethylamino)benzonitrile (2j)³: Yield: 88%; White solid; Mp 70-72 ⁰C (Lit.⁵ 71-73 ⁰C); ¹H NMR (CDCl₃, 300 MHz); δ (ppm): 7.45 (2H, d, J = 8.7 Hz); 6.63 (2H, d, J = 8.7 Hz). ¹³C NMR (CDCl₃, 75 MHz); δ (ppm): 152.5, 133.6, 120.6, 111.8, 97.4, 39.8.

2-aminobenzonitrile (2k)⁵: Yield: 89%; Yellow solid; Mp 48-50 ⁰C (Lit.⁵ 49-51 ⁰C); ¹H NMR (CDCl₃, 300 MHz); δ (ppm): 7.29-7.38 (2H, m); 6.70-6.75 (2H, m); 4.41 (2H, br s). ¹³C NMR (CDCl₃, 75 MHz); δ (ppm): 149.7, 134.0, 132.4, 117.9, 117.6, 115.2, 95.9.

4-chlorobenzonitrile (21)¹: Yield: 93%; White solid; Mp 92-94 ⁰C (Lit.⁵ 91-93 ⁰C); ¹H NMR (CDCl₃, 300 MHz); δ (ppm): 7.60 (2H, d, J = 8.4 Hz); 7.46 (2H, d, J = 8.4 Hz). ¹³C NMR (CDCl₃, 75 MHz); δ (ppm): 139.3, 132.8, 129.2, 118.8, 110.3.

4-bromobenzonitrile (2m)¹: Yield: 91%; White solid; Mp 108-110 0 C (Lit.⁵ 109-111 0 C); ¹H NMR (CDCl₃, 300 MHz); δ (ppm): 7.62 (2H, d, J = 8.4 Hz); 7.51 (2H, d, J = 8.4 Hz). ¹³C NMR (CDCl₃, 75 MHz); δ (ppm): 133.4, 132.6, 127.9, 118.0, 111.3.

4-nitrobenzonitrile (2n)¹: Yield: 95%; Yellow solid; Mp 147-150 $^{\circ}$ C (Lit.⁵ 146-148 $^{\circ}$ C); ¹H NMR (CDCl₃, 300 MHz); δ (ppm): 8.36 (2H, d, J = 8.7 Hz); 7.88 (2H, d, J = 8.7 Hz). ¹³C NMR (CDCl₃, 75 MHz); δ (ppm): 150.1, 133.5, 124.2, 118.3, 116.8.

3-nitrobenzonitrile (20)³: Yield: 94%; White solid; Mp 114-116 ⁰C (Lit.¹¹ 115-116 ⁰C); ¹H NMR (CDCl₃, 300 MHz); δ (ppm): 7.18-7.25 (1H, m); 7.00 (1H, d, *J* = 7.5 Hz); 6.84-6.89 (2H, m). ¹³C NMR (CDCl₃, 75 MHz); δ (ppm): 147.0, 130.1, 121.9, 119.2, 117.4, 112.8.

4-formylbenzonitrile (2p)⁵: Yield: 88%; White solid; Mp 98-100 ^oC (Lit.⁵ 100-101 ^oC); ¹H NMR (CDCl₃, 300 MHz); δ (ppm): 10.1 (1H, s); 7.98 (2H, d, J = 8.1 Hz); 7.84 (2H, d, J = 8.1 Hz). ¹³C NMR (CDCl₃, 75 MHz); δ (ppm): 190.6, 138.7, 132.9, 130.6, 129.9, 117.6.

Terephthalonitrile (2q)⁵: Yield: 87%; White solid; Mp 225-227 ⁰C (Lit.⁵ 224-226 ⁰C); ¹H NMR (CDCl₃, 300 MHz); δ (ppm): 7.52 (s, 4H). ¹³C NMR (CDCl₃, 75 MHz); δ (ppm): 132.7, 118.2, 116.6.

4-acetylbenzonitrile (2r)⁵: Yield: 88%; Light yellow solid; Mp 56-58 ⁰C (Lit.⁵ 55-57 ⁰C); ¹H NMR (CDCl₃, 300 MHz); δ (ppm): 8.03 (2H, d, *J* = 8.1 Hz); 7.77 (2H, d, *J* = 8.1 Hz); 2.64 (3H, s). ¹³C NMR (CDCl₃, 75 MHz); δ (ppm): 196.6, 139.9, 132.5, 128.7, 117.9, 116.3, 26.7.

1-naphthonitrile (2s)⁶: Yield: 86%; White solid; Mp 33-35 ⁰C (Lit.⁵ 35-37 ⁰C); ¹H NMR (CDCl₃, 300 MHz); δ (ppm): 8.21 (1H, d, *J* = 8.4 Hz,), 8.02 (1H, d, *J* = 8.6 Hz), 7.76–7.83 (4H, m), 7.48 (1H, t, *J* = 7.8 Hz). ¹³C NMR (75 MHz, CDCl₃); δ (ppm): 133.5, 132.9, 132.1, 131.8, 128.7, 128.1, 127.0, 125.6, 124.7, 118.1, 110.2.

Benzo[d][1,3]dioxole-5-carbonitrile (2t)¹: Yield: 88%; White solid; Mp 92-94 ⁰C; ¹H NMR (CDCl₃, 300 MHz); δ (ppm): 7.41 (1H, s); 7.14-7.20 (1H, m), 6.98 (1H, d, *J* = 8.2 Hz), 6.01 (2H, s). ¹³C NMR (75 MHz, CDCl₃); δ (ppm): 150.6, 148.2, 127.9, 119.0, 111.1, 108.8, 105.7, 101.3.

Cinnamonitrile (2u)²: Yield: 83%; Colorless oil; ¹H NMR (CDCl₃, 400 MHz); δ (ppm): 7.37-7.49 (6H, m), 5.83 (1H, d, J = 16.3 Hz). ¹³C NMR (100 MHz, CDCl₃); δ (ppm): 150.1, 132.9, 131.4, 129.3, 127.5, 118.8, 95.8.

Furan-2-carbonitrile (2v)¹: Yield: 79%; Viscous oil; ¹H NMR (CDCl₃, 400 MHz); δ (ppm): 7.58 (1H, d, J = 1.5 Hz), 6.96-7.02 (2H, m). ¹³C NMR (100 MHz, CDCl₃); δ (ppm): 147.5, 132.2, 125.3, 119.8, 111.6.

Thiophene-2-carbonitrile (2w)¹: Yield: 81%; Colorless liquid; ¹H NMR (CDCl₃, 400 MHz); δ (ppm): 7.60 (2H, d, J = 4.3 Hz), 7.01-7.06 (1H, m). ¹³C NMR (100 MHz, CDCl₃); δ (ppm): 138.2, 131.4, 126.5, 118.1, 109.2.

Picolinonitrile (2x)⁶: Yield: 83%; Colorless liquid; ¹H NMR (CDCl₃, 300 MHz); δ (ppm): 8.72 (1H, d, J = 4.5Hz), 7.62-7.71 (3H, m). ¹³C NMR (75 MHz, CDCl₃); δ (ppm): 151.3, 135.7, 133.3, 127.6, 124.9, 117.6.

Isonicotinonitrile (2y)⁷: Yield: 80%; White solid; Mp 78-79 ⁰C (Lit.¹⁰ 77-78 ⁰C); ¹H NMR (CDCl₃, 300 MHz); δ (ppm): 8.82 (2H, d, J = 13.5 Hz); 7.55 (2H, d, J = 13.5 Hz). ¹³C NMR (CDCl₃, 75 MHz); δ (ppm): 152.3, 126.8, 120.7, 117.3.

4-(benzyloxy)benzonitrile (2z)⁶: Yield: 86%; White solid; Mp 95-98 ⁰C; ¹H NMR (CDCl₃, 300 MHz); δ (ppm): 7.59-7.63 (2H, m); 7.38-7.44 (5H, m); 7.00-7.07 (2H, m); 5.14 (2H, s). ¹³C NMR (CDCl₃, 75 MHz); δ (ppm): 161.9, 135.7, 134.0, 128.7, 128.4, 127.5, 119.2, 115.6, 104.3, 70.3.

4-(allyloxy)-3-methoxybenzonitrile (2za)⁸: Yield: 84%; Light yellow liquid; ¹H NMR (CDCl₃, 300 MHz); δ (ppm): 7.24 (1H, d, *J* = 9.0 Hz); 7.08 (1H, s); 6.88 (1H, d, *J* = 8.4 Hz); 6.00-6.11 (1H, m); 5.31-5.45 (2H, m); 4.65 (2H, d, *J* = 4.8 Hz); 3.88 (3H, s). ¹³C NMR (CDCl₃, 75 MHz); δ (ppm): 151.9, 149.5, 132.1, 126.2, 119.2, 118.8, 114.3, 112.9, 104.0, 69.7, 56.2.

4-((tert-butyldimethylsilyl)oxy)-3-methoxybenzonitrile (2zb)⁹: Yield: 85%; Colorless liquid; ¹H NMR (CDCl₃, 300 MHz); δ (ppm): 7.05 (1H, s); 6.94 (2H, m); 3.89 (3H, s); 0.88 (9H, s); 0.06 (6H, s). ¹³C NMR (CDCl₃, 75 MHz); δ (ppm): 150.2, 146.9, 126.9, 119.2, 115.4, 113.9, 103.1, 56.2, 25.6, 17.9, -3.64. **Heptanenitrile (2zc)³:** Yield: 78%; Colorless liquid; ¹H NMR (CDCl₃, 300 MHz); δ (ppm): 1.56 (3H, t); 1.24-1.30 (7H, m); 0.88 (3H, t). ¹³C NMR (CDCl₃, 75 MHz); δ (ppm): 119.2, 31.9, 30.5, 29.3, 28.8, 22.6, 14.0.

Pentanenitrile (2zd)¹²: Yield: 79%; Colorless liquid; ¹H NMR (CDCl₃, 500 MHz); δ (ppm): 2.32 (2H, t, J = 7.2 Hz); 1.61-1.63 (2H, m); 1.46-1.47 (2H, m); 0.93 (3H, t, J = 7.4 Hz). ¹³C NMR (CDCl₃, 125 MHz); δ (ppm): 119.9, 27.4, 21.9, 16.9, 13.3.

2-Phenylacetonitrile (2ze)⁶: Yield: 84%; Colorless liquid; ¹H NMR (CDCl₃, 500 MHz); δ (ppm): 7.32-7.36 (5H, m); 3.74 (2H, s). ¹³C NMR (CDCl₃, 125 MHz); δ (ppm): 130.0, 129.2, 128.1, 128.0, 117.9, 23.7.

Figure 2¹³C NMR of 4-tolunitrile (2b)

Figure 4 ¹³C NMR of 2-tolunitrile (2c)

Figure 6¹³C NMR of Benzonitrile (2d)

Figure 7 ¹H NMR of 3, 4-dimethoxybenzonitrile (2e)

Figure 8¹³C NMR of 3, 4-dimethoxybenzonitrile (2e)

Figure 9 ¹H NMR of 4-hydroxy-3-methoxybenzonitrile (2f)

Figure 10¹³C NMR of 4-hydroxy-3-methoxybenzonitrile (2f)

Figure 12 ¹³C NMR of 4-hydroxybenzonitrile (2g)

Figure 13 ¹H NMR of 2-hydroxybenzonitrile (2i)

Figure 14 ¹³C NMR of 2-hydroxybenzonitrile (2i)

Figure 15 ¹H NMR of 4-(dimethylamino)benzonitrile (2j)

Figure 16¹³C NMR of 4-(dimethylamino)benzonitrile (2j)

Figure 17 ¹H NMR of 2-aminobenzonitrile (2k)

Figure 18 ¹³C NMR of 2-aminobenzonitrile (2k)

Figure 19¹H NMR of 4-chlorobenzonitrile (21)

Figure 20¹³C NMR of 4-chlorobenzonitrile (21)

Figure 21 ¹H NMR of 4-bromobenzonitrile (2m)

Figure 22 ¹³C NMR of 4-bromobenzonitrile (2m)

Figure 24 ¹³C NMR of 4-nitrobenzonitrile (2n)

Figure 25 ¹H NMR of 4-formylbenzonitrile (2p)

Figure 26 ¹³C NMR of 4-formylbenzonitrile (2p)

Figure 27 ¹H NMR of Terephthalonitrile (2q)

Figure 28 ¹³C NMR of Terephthalonitrile (2q)

Figure 29 ¹H NMR of Cinnamonitrile (2u)

Figure 30¹³C NMR of Cinnamonitrile (2u)

Figure 32 ¹³C NMR of 4-(benzyloxy)benzonitrile (2z)

Figure 33 ¹H NMR of 4-(allyloxy)-3-methoxybenzonitrile (2za)

Figure 34 ¹³C NMR of 4-(allyloxy)-3-methoxybenzonitrile (2za)

Figure 35 ¹H NMR of 4-((tert-butyldimethylsilyl)oxy)-3-methoxybenzonitrile (2zb)

Figure 36 ¹³C NMR of 4-((tert-butyldimethylsilyl)oxy)-3-methoxybenzonitrile (2zb)

Figure 37 ¹H NMR of Pentanenitrile (2zd)

Figure 38¹³C NMR of Pentanenitrile (2zd)

Figure 40¹³C NMR of 2-Phenylacetonitrile (2ze)

References:

- 1. J. Noh and J. Kim, J. Org. Chem., 2015, 80, 11624-11628.
- P. Nimnual, J. Tummatorn, C. Thongsornkleeb and S. Ruchirawat, J. Org. Chem., 2015, 80, 8657-8667.
- P. Ghosh, B. Saha, G. C. Pariyar, A. Tamang and R. Subba, *Tetrahedron Lett.*, 2016, 57, 3618-3621.
- 4. D. J. Quinn, G. J. Haun and G. Moura-Letts, *Tetrahedron Lett.*, 2016, 57, 3844-3847.
- 5. E. Niknam, F. Panahi and A. K. Nezhad, Eur. J. Org. Chem., 2020, 18, 2699-2707.
- 6. Y. Zhao, G. Mei, H. Wang, G. Zhang and C. Ding, Synlett., 2019, 30, 1484-1488.
- R. J. Song, J. C. Wu, Y. Liu, G. B. Deng, C. Y. Wu, W. T. Wei and J. H. Li, *Synlett.*, 2012, 23, 2491-2496.
- 8. P. Maity, D. Kundu, T. Ghosh and B. C. Ranu, Org. Chem. Front., 2018, 5, 1586-1599.
- 9. Y. Kim, Y. H. Rhee and J. Park, Org. Biomol. Chem., 2017, 15, 1636-1641.
- M. Sridhar, M. K. K. Reddy, V. V. Sairam, J. Raveendra, K. R. Godala, C. Narsaiah, C. Ramanaiah and C. S. Reddy, *Tetrahedron Lett.*, 2012, 53, 3421-3424.
- 11. V. K. Das, S. N. Harsh and N. Karak, Tetrahedron Lett., 2016, 57, 549-553.
- 12. Y. Z. Zhu, X. Q. Zhang, F. Liu, H. M. Gu and H. L. Zhu, Synth. Commun., 2013, 43, 2943-2948.