Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Supporting Information for:

One-pot synthesis of α-aminophosphonates by yttrium-catalyzed Birum–Oleksyszyn reaction

Davide Ceradini, and Kirill Shubin^a

a Latvian Institute of Organic Synthesis, 21 Aizkraukles St., Riga LV-1006, Latvia; e-mail: kir101@osi.lv

Table of Contents

Section 1 Experiment section	3
Section 2: Product characterization	10
Section 3: NMR studies	24

Experiment section

General information: Unless otherwise specified, all commercially available reagents were used as received. ¹H, ¹³C NMR and ³¹P NMR spectra were obtained on a 400 MHz Bruker Avance 400 spectrometer at ambient temperature at 400 and 101 MHz, respectively. Chemical shifts (δ) are reported in parts per million (ppm) relative to residual DMSO peak (s, δ 2.50 for ¹H and t, δ 39.53 for ¹³C, respectively). Multiplicities are given as s (singlet), d (doublet), t (triplet), q (quartet), and m (multiplet). Complex splittings are described by a combination of these abbreviations, *i.e.* dd (doublet of doublets). Reaction conversion was estimated LC-MS on Waters Acquity UPLC H-class instrument, column Waters Acquity UPLC BEH-C18, 2.1 × 50 mm, 1.7 µm, eluent 5–95% MeCN in 0.1% aq. HCOOH; flow rate: 0.8 mL/min; detection Waters PDA Detector (200-300 nm). HRMS spectra were acquired on an electrospray ionization mass spectrometer with a TOF analyzer, using the following parameters: positive ionization mode, drying gas 10 mL/min and 325°C, fragment or ionization 100V.

Procedure of synthesis of Tris(4-acetamidophenyl) phosphite (1)

To a well dry 500 mL flask equipped with a magnetic stirrer, were added, under argon atmosphere, 4acetamidophenol (3.0 equiv.), previously dried in vacuum for 24h, dry-THF (100 mL) and drytriethylamine (3.0 equiv.), the flask was placed in an ice bath and after 10 minutes was added dropwise phosphorous trichloride (1.0 equiv.). The mixture was stirred for 1h at 0°C, then was filtered off in a filter of 150 mL to remove the solid and the filtrate cake was washed with dry-THF (50 mL), the liquid was poured into a 500 mL flask and the solvent removed with rotavapor. Once solid was formed in the flask was kept in a vacuum for 6 h to give a white foamy solid. Yield 98%

Procedure of synthesis of Tris(4-methoxyphenyl) phosphite (38)

To a well dry 250 mL flask equipped with a magnetic stirrer, were added, under argon atmosphere, 4methoxyphenol (3.0 equiv.), previously dried in vacuum for 24h, dry-THF (50 mL) and dry-triethylamine (3.0 equiv.), the flask was placed in an ice bath and after 10 minutes was added dropwise phosphorous trichloride (1.0 equiv.). The mixture was stirred for 1 h at 0°C, then was filtered off in a filter of 150 mL to remove the solid and the filtrate cake was washed with dry-THF (25 mL), the liquid was poured into a 250 mL flask and the solvent removed with rotavapor. Once solid was formed in the flask was kept in a vacuum for 6 h to give a white-off solid. Yield 69%

Procedure of synthesis of Tert-butyl (4-(2-oxoethyl)phenyl)carbamate (2)

To a 500 mL flask equipped with a magnetic stirrer, were added 4-Aminophenetyl alcohol (1.0 equiv.), ethyl acetate (200 mL) and di-tert-butyldicarbonate (1.1 equiv.). The flask was covered with aluminum foil and the mixture was stirred for 16 h at r.t., then heptane (100 mL) was added to the reaction mixture. A plug with 180 g of Silica was prepared in a 350 mL vacuum filter, the solution was poured in the filter and washed with 500 mL of ethyl acetate/heptane 2:1, the solvent was removed to give the product as a white solid. The product was used without further treatment for the next step of oxidation. To a 500 mL flask equipped with a magnetic stirrer were added in this sequence: Boc-protected intermediate (1.0 equiv.), dissolved in ethyl acetate (90.0 mL) and TEMPO (0.01 equiv.) dissolved in toluene (90.0 mL), then potassium bromide (0.1 equiv.) dissolved in 67.0 mL NaHCO₃ sat. The mixture was vigorously stirred for 10 minutes in an ice bath, then 67.0 mL of sodium hypochlorite 13% were added dropwise in 5 minutes. The reaction was vigorously stirred for 10 minutes, then was quenched with sodium thiosulfate 10% (250.0 mL), the reaction mixture was washed with ethyl acetate (3 x 200 mL), the combined organic layers were then washed with brine (500 mL) and dried with Na₂SO₄, the solvent was removed by rotary evaporation. The crude aldehyde was dissolved in ethanol (340.0 mL) in a 500 mL flask equipped with a magnetic stirrer, a solution of sodium bisulfite (1.5 equiv.) in 20 mL of deionized water, was added dropwise in 5 minutes, the mixture was stirred for 18h at r.t. and 1h at 0°C, the solid was filtrated, washed with cold ethanol (300 mL). And dried in a vacuum for 18h to give a white solid. To a 500 mL flask, were added the white solid (1.0 equiv.) dissolved in deionized water (260 mL), sodium carbonate (2.2 equiv.) and ethyl acetate (300 mL), the mixture was stirred for 3 h, the solution was placed in a 1.0 L separation funnel and extracted with ethyl acetate 3 x 250 mL, the combined organic layers were washed with brine (400 mL) and dry on Na₂SO₄, the solvent was removed with rotary evaporation to get a pale yellow solid. Yield 77%

Procedure for the synthesis of compound 4 from compound aminal 7

Scheme S1: Synthesis of compound 4 from aminal 7

In a 5 mL tube, under argon atmosphere, were added 1.0 equiv. of aminal (7), 1.0 equiv. phosphite (1) and 0.6 mL of anhydrous acetonitrile. The mixture was stirred for 24h. Product monitored with naphthalene as internal standard

Time	Birum-Oleksyszyn reaction with aminal (7)	Birum-Oleksyszyn reaction with aldehyde (2)
2 h	0.94	1.30
4 h	0.79	1.55
6 h	0.74	1.44

Table S1: Ratio of chromatographic concentration of product compare with the chromatographic

 concentration of the internal standard

Procedure for testing stability of compound 4 in the presence of water and yttrium triflate

Scheme S2: hydrolysis of compound 4 catalyzed by yttrium triflate

In a 5 mL tube were added the phosphonate 7, 1.0 equiv. of water, 0.1 eq. of $Y(OTf)_3$, and naphthalene as internal standard, the mixture was stirred for 24h.

Figure S2: Chromatogram of the reaction mixture after 24h, at 2.49 minutes is possible to notice the hydrolized product (10)

Kinetic profile of the Birum-Oleksyszyn reaction for the synthesis of compound 4

Figure S3: In 5 mL tube added 1.0 equiv. of phospite (1), 1.0 equiv. of aldehyde (2), 1.0 equiv. of carbamate (3), 0.1 eq. of Y(OTf)3, 50 uL of a stock solution of naphthalene in EtOAc (25 g/L). The mixture was stirred at r.t. for 24 h, sampling at 1 h, 2 h, 4 h, 6 h, 8 h, 24 h. On the vertical axis reported relative concentration of interesting compound with the naphthalene peak, on the horizontal axis reported the time in h. List of compound investigated: diarylphosphite (9), triarylphosphate (37), triarylphosphite (1), monoarylproduct (10), product (4), dicarbamate / aminal (7)

Figure S4: tris(4-acetamidophenyl) phosphate formed after oxidation of compound 1

Procedure of synthesis of Dibenzyl (2-(4-((tert-butoxycarbonyl)amino)phenyl)ethane-1,1diyl)dicarbamate (7)

Scheme S3: Preparation of aminal 7 from 1.0 eq. of aldehyde 2 and 2.0 eq. of carbamate 3

In a 25 mL flask were added 0.85 mmol of aldehyde, 1.7 mmol of benzyl carbamate and 0.085 mmol of $Y(OTf)_3$ dissolved in 2.5 mL of anhydrous acetonitrile. The solution was stirred for 4h. The precipitate was filtered off and washed with 2 mL of acetonitrile, dried to get 102 mg with purity 100%. Yield 23%.

General procedure for the synthesis of a-aminophosphonate

Scheme S4: One-pot three-component synthesis of α-aminophosphonate

In a 50 mL flask were added, under an argon atmosphere, previously dissolved in anhydrous acetonitrile, the aldehyde (1.0 eq.), the carbamate (1.0 eq.) the yttrium triflate (0.1 eq.), and the phosphite (1.0 eq.) The solution was kept stirring for 4-24 h at r.t. then the solvent was removed. The residue was purified with flash chromatography on silica gel (gradient Heptane/Ethylacetate) to obtain the desired product.

Product characterization

Tris(4-acetamidophenyl) phosphite (1)

Yield: 98%

¹**H NMR:** (400 MHz, DMSO-*d*₆) δ: 9.99 (3H, s), 7.58 (6H, d, J=8Hz), 7.09 (6H, d, J=8Hz), 2.03 (9H, s)

¹³C NMR: (101 MHz, DMSO-*d*₆) δ: 168.14, 146.06, 136.00, 120.75, 120.47, 23.89
 ³¹P NMR: (162 MHz, DMSO-*d*₆) δ: 129.32

HRMS (ESI+): m/z calc'd for C₂₄H₂₅N₃O₆P [M+H]⁺:482.1481, found 482.1492

Tris(4-methoxyphenyl) phosphite (38)

Yield: 69%

¹H NMR: (400 MHz, DMSO-*d*₆) δ: 7.22 (6H, dd, J=12,4Hz), 6.98 (6H, d, J=12Hz), 3.73 (9H, s)
¹³C NMR: (101 MHz, d6-DMSO-d6) δ: 156.89, 143.59, 120.92, 114.95, 55.38.
³¹P NMR: (162 MHz, DMSO-*d*₆) δ: 129.49
HRMS (ESI+): m/z calc'd for C₂₁H₂₂O₆P [M+H]⁺:400.1076, found 400.1084

Tert-butyl (4-(2-oxoethyl)phenyl)carbamate (2)

Yield: 77% 1H-NMR (400 MHz, DMSO-*d*₆) δ: 9.63 (1H, t, J=4Hz), 9.32 (1H, s), 7.43 (2H, d, J=8 Hz), 7.11 (2H, d, J=8Hz), 3.66 (2H, d, J=4Hz), 1.47 (9H, s) **13C-NMR** (101 MHz, DMSO-*d*₆) δ: 200.52, 152.80, 138.44, 129.91, 126.04, 118.39, 78.99, 48.95, 28.13. **HRMS (ESI+)** m/z calc'd for C13H17NO3Na [M+Na]+: 258.1106, found 258.1115

Yield: 23%; white solid

¹**H NMR:** (400 MHz, DMSO-*d*₆) δ: 9.28 (1H, s), 7.71 (2H, s), 7.35 (6H, t, J=8Hz), 7.30 (6H, t, J=8Hz), 7.12 (2H, d, J=8Hz), 5.16 (1H, s), 5.00 (4H, m), 2.83 (2H, d, J=4Hz), 1.49 (9H, s), ¹³**C NMR:** (101 MHz, DMSO-*d*₆) δ 155.41, 153.27, 138.31, 137.56, 131.41, 129.94, 128.76, 128.15, 128.06, 118.32, 79.33, 65.55, 61.70, 28.62.

HRMS (ESI+): m/z calc'd for C₂₉H₃₃N₃O₆Na [M+Na]⁺: 542.2267, found 542.2267

Benzyl(1-(bis(4-acetamidophenoxy)phosphoryl)-2-(4-((tertbutoxycarbonyl)amino)phenyl) ethyl) carbamate (4)

Yield: 42%; white solid

¹**H NMR:** NMR (400 MHz, DMSO-*d*₆) δ: 10.00 (s, 2H), 9.32 (s, 1H), 8.11 (d, J=8Hz, 1H), 7.57 (m, 4H), 7.39 (d, J=8Hz, 2H), 7.30 (m, 3H), 7.19 (d, J=8Hz, 2H), 7.12 (m, 6H), 4.97 (dd, J=32,12Hz, 2H), 4.42 (q, J=12Hz, 1H), 3.18 (d, J=12Hz, 1H), 2.90 (m, 1H), 2.04 (s, 6H), 1.49 (s, 9H)

¹³C NMR: (101 MHz, DMSO-*d*₆) δ 168.70, 156.39, 153.27, 145.74, 145.46, 138.60, 137.45, 137.01, 130.92, 129.83, 128.71, 128.02, 127.59, 121.29, 121.03, 120.62, 118.36, 79.40, 65.87, 50.51, 34.04, 28.62, 24.37.

³¹**P NMR:** (162 MHz, DMSO-*d*₆) δ: 18.35

HRMS (ESI+): *m/z* calc'd for C₃₇H₄₁N₄O₉P [M+Na]⁺: 739.2509, found 739.2519

Benzyl ((diphenoxyphosphoryl)(phenyl)methyl)carbamate (14)

Yield: 82%; white solid

¹**H NMR:** (400 MHz, DMSO-*d*₆) δ: 8.95 (d, J=12Hz, 1H), 7.66 (d, J=8Hz, 2H), 7.35 (m, 12H), 7.19 (m, 2H), 7.07 (d, J=8Hz, 2H), 6.97 (d, J=8Hz, 2H), 5.64 (dd, J=24,8 Hz, 1H), 5.12 (dd, J=36,12Hz, 2H).

¹³C NMR: (101 MHz, DMSO-*d*₆) δ 155.85, 149.91, 149.61, 136.46, 134.17, 129.63, 128.35, 128.24, 128.17, 128.06, 127.75, 125.07, 120.15, 120.09, 66.00, 53.50, 51.94, 39.33.

³¹**P** NMR: NMR (162 MHz, DMSO-*d*₆) δ: 14.80

HRMS (ESI+): *m/z* calc'd for C₂₇H₂₅NO₅P [M+H]⁺:474.1470, found 474.1476

Benzyl ((bis(p-tolyloxy)phosphoryl)(phenyl)methyl)carbamate (15)

Yield: 75%, white solid

¹**H NMR:** (400 MHz, DMSO-*d*₆) δ: 8.87 (d, J=8Hz, 1H), 7.61 (m, 2H), 7.36 (m, 8H), 7.12 (m, 4H), 6.92 (d, J=8Hz, 2H), 6.82 (d, J=8Hz, 2H), 5.54 (dd, J=24,12 Hz, 1H), 5.10 (dd, J=36,12 Hz, 2H), 2.25 (s, 6H)

¹³**C NMR**: (101 MHz, DMSO-*d*₆) δ 156.47, 148.43, 148.10, 137.14, 134.97, 134.84, 130.55, 128.99, 128.89, 128.83, 128.66, 128.43, 128.41, 120.51, 120.45, 66.63, 53.26, 20.71.

³¹**P NMR:** (162 MHz, DMSO-*d*₆) δ: 14.79

HRMS (ESI+): *m/z* calc'd for C₂₉H₂₉NO₅P [M+H]⁺: 502.1783, found 502.1801

Benzyl ((bis(o-tolyloxy)phosphoryl)(phenyl)methyl)carbamate (16)

Yield: 34%, white solid

¹**H NMR:** (400 MHz, DMSO-*d*⁶) δ: 8.92 (J=12 Hz, 1H), 7.63 (J=8 Hz, 2H), 7.36 (m, 8H), 7.18 (m, 2H), 7.05 (m, 6H), 5.64 (dd, J=24,12 Hz, 1H), 5.06 (dd, J=28,12 Hz, 1H), 1.98 (d, J=20 Hz, 6H)

¹³C NMR: (101 MHz, DMSO-*d*₆) δ 156.51, 149.21, 149.11, 137.09, 135.05, 131.83, 129.44, 129.09, 128.87, 128.82, 128.73, 128.40, 128.34, 127.42, 125.54, 120.29, 66.64, 53.44, 16.09.
³¹P NMR: (162 MHz, DMSO-*d*₆) δ: 14.80

HRMS (ESI+): *m*/*z* calc'd for C₂₉H₂₉NO₅P [M+H]⁺: 502.1795, found 502.1783

Benzyl ((bis(4-acetamidophenoxy)phosphoryl)(phenyl)methyl)carbamate (17)

Yield: 72%, white solid

¹**H NMR:** (400 MHz, DMSO-*d*₆) δ: 9.98 (s, 2H), 8.89 (d, J=12 Hz, 1H), 7.62 (d, J=8 Hz, 2H), 7.51 (t, J=8 Hz, 4H), 7.37 (m, 8H), 6.97 (d, J=8 Hz, 2H), 6.88 (d, J= 8 Hz, 2H), 5.55 (dd, J= 24,8 Hz, 1H), 5.10 (dd, J=36,12 Hz, 2H), 2.03 (d, J=4 Hz, 6H)

¹³C NMR: (101 MHz, DMSO-*d*₆) δ 168.21, 156.01, 145.24, 144.92, 136.66, 136.52, 134.47, 128.54, 128.45, 128.37, 128.22, 127.98, 127.95, 120.49, 120.43, 120.08, 66.21, 52.61, 23.90
³¹P NMR: (162 MHz, DMSO-*d*₆) δ: 15.05
HRMS (ESI+): *m/z* calc'd for C₃₁H₃₁N₃O₇P [M+H]+:588.1900, found 588.1909

Benzyl ((bis(4-methoxyphenoxy)phosphoryl)(phenyl)methyl) (18)

Yield: 92%, white solid

¹**H NMR:** NMR (400 MHz, DMSO-*d*₆) δ: 8.87 (s J=12 Hz, 1H), 7.61 (d, J=4 Hz, 2H), 7.37 (m, 8H), 6.95 (d, J=12 Hz, 2H), 6.86 (m, 6H), 5.53 (dd, J=24,8 Hz, 1H), 5.10 (dd, J=80,12 Hz, 2H), 3.69 (s, 6H)

¹³C NMR: (101 MHz, DMSO-*d*₆) δ 156.86, 156.50, 144.04, 143.69, 137.15, 135.04, 128.98, 128.89, 128.84, 128.65, 128.44, 121.71, 121.64, 115.12, 66.65, 55.90, 53.14.

³¹**P NMR:** (162 MHz, DMSO-*d*₆) δ: 15.27

HRMS (ESI+): *m/z* calc'd for C₂₉H₂₉NO₇P [M+H]⁺:534.1682, found 534.1689

Benzyl ((diphenoxyphosphoryl)(4-nitrophenyl)methyl)carbamate (19)

Yield: 64%, white solid

¹**H NMR:** (400 MHz, DMSO-*d*₆) δ: 9.11 (d, J=12Hz, 1H), 8.28 (d, J=12Hz, 2H), 7.96 (d, J=8Hz, 2H), 7.36 (m, 9H), 7.20 (t, J=8Hz, 2H), 7.05 (m, 4H), 5.88 (dd, J=24,12Hz, 1H), 5.12 (dd, J=32,12Hz, 2H)

¹³**C NMR**: (101 MHz, DMSO-*d*₆) δ 156.00, 149.95, 149.65, 147.35, 142.12, 136.52, 129.93, 129.73, 128.40, 128.00, 125.46, 123.55, 120.33, 120.24, 66.38, 52.52

³¹**P NMR:** (162 MHz, DMSO-*d*₆) δ: 13.24

HRMS (ESI+): *m/z* calc'd for C₂₇H₂₄N₂O₇P [M+H]⁺: 519.1321, found 519.1325

Benzyl ((diphenoxyphosphoryl)(4-fluorophenyl)methyl)carbamate (20)

Yield: 36%, white solid

¹H NMR: (400 MHz, DMSO-*d*₆) δ: 8.93 (d, J=12Hz, 1H), 7.70 (m, 2H), 7.35 (m, 9H), 7.25 (t, J=8Hz, 2H), 7.20 (t, J=8Hz, 2H), 7.06 (d, J=8Hz, 2H), 6.98 (d, J=12Hz, 2H) ¹³C NMR: (101 MHz, DMSO-*d*₆) δ 163.17, 160.75, 155.92, 150.03, 149.77, 136.59, 130.70,

130.60, 129.82, 128.35, 127.95, 125.29, 120.28, 120.23, 115.30, 66.21, 52.03. (100 MHz,) ³¹P NMR: (162 MHz, DMSO- d_6) δ : 14.50

HRMS (ESI+): *m/z* calc'd for C₂₇H₂₄FNO₅P [M+H]⁺: 492.1298, found 492.1377

Benzyl ((4-chlorophenyl)(diphenoxyphosphoryl)methyl)carbamate (21)

Yield: 55%, white solid ¹H NMR: (400 MHz, DMSO- d_6) δ : 8.94 (d, J=12Hz, 1H), 7.67 (d, J=8Hz, 2H), 7.48 (d, J=8Hz, 2H), 7.34 (t, J=8Hz, 9H), 7.20 (t, J=8Hz, 2H), 7.05 (d, J=8Hz, 2H), 7.00 (d, J=8Hz, 2H), 5.65 (dd, J=24,8 Hz, 1H), 5.10 (dd, J=32,12 Hz, 2H) ¹³C NMR: (101 MHz, DMSO- d_6) δ 156.42, 150.51, 150.21, 137.07, 133.97, 133.52, 130.83, 130.35, 128.92, 128.85, 128.44, 125.82, 120.79, 120.72, 66.73, 52.76 ³¹P NMR: (162 MHz, DMSO- d_6) δ : 14.18 HRMS (ESI+): m/z calc'd for C₂₇H₂₄ClNO₅P [M+H]⁺: 508.1081, found 508.1096

Benzyl ((bis(p-tolyloxy)phosphoryl)(4-chlorophenyl)methyl)carbamate (22)

Yield: 43%, white solid

¹**H NMR:** (400 MHz, DMSO-*d*₆) δ: 9.98 (2H, s), 8.89 (1H, d, J=8Hz), 7.63 (2H, dd, J=8,4 Hz), 7.48 (6H, m), 7.33 (5H, m), 6.96 (2H, d, J=8Hz), 6.90 (2H, d, J=8Hz), 5.58 (1H, dd, J=24,12Hz), 5.05 (2H, dd, J=32,12Hz), 2.01 (6H, s)

¹³C NMR: (101 MHz, DMSO-*d*₆) δ 168.22, 155.95, 145.15, 144.84, 136.61, 136.57, 133.63, 133.02, 130.33, 128.47, 128.38, 128.00, 127.96, 120.48, 120.39, 120.10, 66.28, 52.05, 23.90
³¹P NMR: (162 MHz, DMSO-*d*₆) δ: 14.19

HRMS (ESI+): m/z calc'd for C₃₁H₃₀ClN₃O₇P [M+H]+: 622.1510, found 622.1526

Benzyl ((bis(4-methoxyphenoxy)phosphoryl)(4-chlorophenyl)methyl)carbamate (23)

Yield: 81%, white solid

¹**H NMR:** (400 MHz, DMSO-*d*₆) δ: 8.89 (d, J=8Hz, 1H), 7.64 (dd, J=8,4 Hz, 2H), 7.46 (d, J=8 Hz, 2H), 7.35 (m, 5H), 6.95 (dd, J=8,4 Hz, 2H), 6.87 (m, 6H), 5.58 (dd, J=24,12 Hz, 1H), 5.10 (dd, J=36,12 Hz, 2H), 3.70 (s, 6H)

¹³C NMR: (101 MHz, DMSO-*d*₆) δ 156.90, 156.44, 143.96, 143.62, 137.09, 134.16, 133.45, 130.76, 128.90, 128.85, 128.47, 121.71, 121.69, 121.60, 115.19, 115.15, 66.72, 55.92, 52.51.
³¹P NMR: (162 MHz, DMSO-*d*₆) δ: 14.64

HRMS (ESI+): m/z calc'd for C₂₉H₂₈ClNO₇P [M+H]⁺ 568.1292:, found 568.1302

Benzyl ((bis(4-acetamidophenoxy)phosphoryl)(4-chlorophenyl)methyl)carbamate (24)

Yield: 87%, white solid

¹**H NMR:** (400 MHz, DMSO-*d*₆) δ: 9.98 (s, 2H), 8.89 (d, J= 8Hz, 1H), 7.63 (dd, J=8,4 Hz, 2H), 7.48 (m, 6H), 7.33 (m, 5H), 6.96 (d, J=8Hz, 2H), 6.90 (d, J=8 Hz, 2H), 5.58 (dd, J=24,12 Hz, 1H), 5.05 (dd, J=32,12 Hz, 2H), 2.01 (s, 6H)

¹³C NMR: (101 MHz, DMSO-*d*₆) δ 168.68, 156.41, 145.61, 145.31, 137.07, 137.04, 134.09, 133.48, 130.80, 128.93, 128.84, 128.46, 128.42, 120.95, 120.85, 120.56, 66.74, 52.52, 24.36.
³¹P NMR: (162 MHz, DMSO-*d*₆) δ: 14.44

HRMS (ESI+): *m/z* calc'd for C₂₉H₂₈ClNO₅P [M+H]⁺: 536.1394, found 536.1395

Benzyl ((bis(o-tolyloxy)phosphoryl)(4-chlorophenyl)methyl)carbamate (25)

Yield: 26%, white solid

¹**H NMR:** (400 MHz, DMSO-*d*₆) δ: 8.95 (d, J=12Hz, 1H), 7.68 (dd, J=8,2 Hz, 2H), 7.49 (d, J=8Hz, 2H), 7.34 (m, 5H), 7.22 (d, J=8Hz, 2H), 7.08 (m, 6H), 5.70 (dd, J=24,12 Hz, 1H), 5.08 (dd, J=32,12 Hz, 2H), 2.00 (d, J=24 Hz, 6H)

¹³**C NMR:** (101 MHz, DMSO-*d*₆) δ 156.45, 149.11, 149.03, 137.03, 134.19, 133.53, 131.88, 130.90, 129.46, 129.38, 128.89, 128.82, 128.43, 128.35, 127.52, 127.40, 125.63, 120.41, 120.18, 66.70, 52.93, 16.10.

³¹**P NMR:** (162 MHz, DMSO-*d*₆) δ: 14.22

HRMS (ESI+): *m/z* calc'd for C₂₉H₂₈ClNO₅P [M+H]⁺: 536.1394, found 536.1395

Benzyl ((4-bromophenyl)(diphenoxyphosphoryl)methyl)carbamate (26)

Yield: 54%, white solid

¹**H NMR:** (400 MHz, DMSO-*d*₆) δ: 8.96 (d, J=12Hz, 1H), 7.62 (s, 4H), 7.35 (m, 9H), 7.20 (t, J=8Hz, 2H), 7.07 (d, J=8Hz, 2H), 7.03 (d, J=8Hz, 2H), 5.66 (dd, J=24,8 Hz, 1H,), 5.12 (dd, J=32,12 Hz, 2H)

¹³**C NMR**: (101 MHz, DMSO-*d*₆) δ 155.97, 150.04, 149.74, 136.60, 133.94, 131.39, 130.66, 129.88, 128.38, 127.96, 125.35, 121.68, 120.33, 120.25, 66.27, 52.20.

³¹**P NMR:** (162 MHz, DMSO-*d*₆) δ: 14.02

HRMS (ESI+): *m/z* calc'd for C₂₇H₂₄BrNO₅P [M+H]⁺: 552.0575, found 552.0582

Benzyl ((diphenoxyphosphoryl)(4-iodophenyl)methyl)carbamate (27)

Yield: 25%, white solid

¹**H NMR:** (400 MHz, DMSO-*d*₆) δ: 8.86 (d, J=8Hz, 1H), 7.70 (d, J=8Hz, 2H), 7.38 (d, J=8Hz, 2H), 7.26 (m, 9H), 7.12 (t, J=8Hz, 2H), 6.99 (d, J=8Hz, 2H), 6.94 (d, J=8Hz, 2H), 5.53 (dd, J=24,12 Hz, 1H), 5.03 (dd, J=32,12 Hz, 2H)

¹³**C NMR:** (101 MHz, DMSO-*d*₆) δ 155.97, 150.03, 149.73, 137.25, 136.60, 134.30, 130.68, 129.86, 128.37, 127.97, 125.35, 120.33, 120.25, 94.78, 66.25, 52.32.

³¹**P NMR:** (162 MHz, DMSO-*d*₆) δ: 14.03

HRMS (ESI+): *m/z* calc'd for C₂₇H₂₄INO₅P [M+H]+: 600.0437, found 600.0446

Methyl 4-((((benzyloxy)carbonyl)amino)(diphenoxyphosphoryl)methyl)benzoate (28)

Yield: 69%, white solid

¹**H NMR:** (400 MHz, DMSO-*d*₆) δ: 9.03 (d, J=12 Hz, 1H), 7.97 (d, J=8Hz, 2H), 7.79 (d, J=8Hz, 2H), 7.32 (9H, m), 7.17 (t, J=8Hz, 2H), 7.02 (dd, J=20,8 Hz, 4H), 5.73 (dd, J=24,8 Hz, 1H), 5.09 (dd, J=36,12 Hz, 2H), 3.84 (s, 3H)

¹³**C NMR**: (101 MHz, DMSO-*d*₆) δ 165.89, 156.03, 150.01, 149.71, 139.78, 136.59, 129.89, 129.44, 129.23, 128.82, 128.38, 127.99, 125.39, 120.33, 120.26, 66.31, 52.69, 52.23.

³¹**P NMR:** NMR (162 MHz, DMSO-*d*₆) δ: 13.87

HRMS (ESI+): *m/z* calc'd for C₂₉H₂₇NO₇P [M+H]⁺: 532.1525, found 532.1506

Benzyl (1-(diphenoxyphosphoryl)-2-phenylethyl)carbamate (29)

Yield: 48%, white solid

¹H NMR: (400 MHz, DMSO-*d*₆) δ: 8.20 (d, J=8Hz, 1H), 7.39 (m, 4H), 7.24 (m, 15H), 4.97 (dd, J=24,12 Hz, 2H), 4.55 (m, 1H), 3.29 (dt, J= 24,4 Hz, 1H), 3.02 (m, 1H) ¹³C NMR: (101 MHz, DMSO-*d*₆) δ 155.91, 150.14, 149.87, 137.13, 136.95, 136.92, 129.90, 129.14, 128.27, 127.68, 127.25, 126.80, 126.63, 125.32, 120.66, 120.41, 65.47, 49.97, 34.18. ³¹P NMR: (162 MHz, DMSO-*d*₆) δ: 18.00 HRMS (ESI+): m/z calc'd for C₂₈H₂₇NO₅P [M+H]⁺:488.1627, found 488.1639

Benzyl ((4-cyanophenyl)(diphenoxyphosphoryl)methyl)carbamate (30)

Yield: 67%, white solid

¹**H NMR:** (400 MHz, DMSO-*d*₆) δ: 9.07 (d, J=12 Hz, 1H), 7.90 (t, J=8Hz, 4H), 7.35 (m, 9H), 7.21 (t, J=8Hz, 2H), 7.05 (m, 4H), 5.83 (dd, J=24,12 Hz, 1H), 5.13 (dd, J=32,12 Hz, 2H)

¹³**C NMR:** (101 MHz, DMSO-*d*₆) δ 157.35, 155.98, 149.68, 149.68, 140.08, 136.54, 132.40, 129.90, 129.40, 128.39, 128.02, 125.44, 120.31, 120.23, 118.80, 118.58, 115.24, 111.11, 66.37, 52.66,

³¹**P NMR:** (162 MHz, DMSO-*d*₆) δ: 13.45

HRMS (ESI+): *m/z* calc'd for C₂₈H₂₄N₂O₅P [M+H]⁺: 499.1428, found 499.1423

Benzyl ((bis(p-tolyloxy)phosphoryl)(4-cyanophenyl)methyl)carbamate (31)

Yield: 63%, white solid

¹**H NMR**: (400 MHz, DMSO-*d*₆) δ: 9.00 (d, J=8Hz, 1H), 7.87 (m, 4H), 7.35 (m, 5H), 7.13 (m, 4H), 6.91 (m, 4H), 5.74 (dd, J=24,12 Hz, 1H), 5.10 (dd, J=36,12 Hz, 2H), 2.24 (s, 6H) ¹³**C NMR**: (101 MHz, DMSO-*d*₆) δ 156.43, 148.29, 147.99, 140.69, 137.01, 135.02, 132.84, 130.61, 129.83, 128.85, 128.46, 120.46, 120.39, 119.05, 115.48, 111.49, 66.80, 53.12, 20.70. ³¹**P NMR**: (162 MHz, DMSO-*d*₆) δ: 13.46 **HRMS (ESI+)**: m/z calc'd for C₃₀H₂₈N₂O₅P [M+H]⁺: 527.1742, found 527.1736

Benzyl ((diphenoxyphosphoryl)(4-hydroxy-3-methoxyphenyl)methyl)carbamate (32)

Yield: 75%, white solid

¹**H NMR:** (400 MHz, DMSO-*d*₆) δ: 9.11 (s, 1H), 8.76 (d, J=12Hz, 1H), 7.34 (m, 9H), 7.24 (m, 1H), 7.19 (m, 2H), 7.07 (d, J=8Hz, 2H), 6.76 (d, J=8Hz, 1H), 5.47 (dd, J=20,12 Hz, 1H), 5.10 (dd, J=36,12 Hz, 2H), 3.73 (s, 3H)

¹³C NMR: (101 MHz, DMSO-*d*₆) δ 155.91, 150.24, 149.95, 147.46, 146.64, 136.71, 129.80, 128.38, 127.97, 125.18, 124.67, 121.43, 120.34, 120.26, 115.19, 112.87, 66.13, 55.70, 52.62.
³¹P NMR: (162 MHz, DMSO-*d*₆) δ: 15.18

HRMS (ESI+): *m/z* calc'd for C₂₈H₂₇NO₇P [M+H]⁺: 520.1528, found 520.1525

Benzyl (2-(4-((tert-butoxycarbonyl)amino)phenyl)-1-(diphenoxyphosphoryl)ethyl)carbamate (33)

Yield: 38%, white solid

¹**H NMR:** (400 MHz, DMSO-*d*₆) δ: 9.32 (s, 1H), 8.15 (d, J=8Hz, 1H), 7.39 (m, 6H), 7.21 (m, 13H), 4.97 (dd, J=32,12 Hz, 2H), 4.46 (m, 1H), 3.20 (m, 1H), 2.92 (m, 1H), 1.49 (s, 9H)

¹³C NMR: (101 MHz, DMSO-*d*₆) δ 155.96, 152.81, 150.16, 149.88, 138.17, 137.00, 130.42, 129.89, 129.37, 128.26, 127.56, 127.13, 125.31, 120.69, 120.43, 117.90, 78.94, 65.40, 50.14, 33.55, 28.16.

³¹**P NMR:** (162 MHz, DMSO-*d*₆) δ: 18.11

HRMS (ESI+): *m/z* calc'd for C₃₃H₃₅N₂O₇PNa [M+Na]⁺: 625.2080, found 625.2101

Tert-butyl ((diphenoxyphosphoryl)(phenyl)methyl)carbamate (34)

Yield: 43%, white solid

¹**H NMR**: (400 MHz, DMSO- d_6) δ : 8.48 (d, J=12Hz, 1H), 7.63 (d, J=8Hz, 2H), 7.36 (m, 7H), 7.19 (t, J=8Hz, 2H), 7.09 (d, J=8Hz, 2H), 7.00 (d, J=8Hz, 2H), 5.56 (dd, J=32,12 Hz, 1H), 1.40 (s, 9H) ¹³**C NMR**: (101 MHz, DMSO- d_6) δ 170.32, 155.16, 150.20, 149.87, 134.62, 129.80, 128.61, 128.38, 128.13, 125.22, 120.33, 120.26, 79.12, 59.75, 52.27, 28.11, 20.76, 14.08.

³¹**P NMR:** (162 MHz, DMSO-*d*₆) δ: 15.16

HRMS (ESI+): *m/z* calc'd for C₂₄H₂₆NO₅PNa [M+Na]⁺: 462.1446, found 462.1468

Tert-butyl ((diphenoxyphosphoryl)(4-nitrophenyl)methyl)carbamate (35)

Yield: 41%, white solid ¹**H NMR:** (400 MHz, DMSO-*d*₆) δ: 8.67 (d, J=12Hz, 1H), 8.26 (d, J=8Hz, 2H), 7.93 (m, 2H), 7.35 (t, J=8Hz, 4H), 7.19 (m, 2H), 7.08 (m, 4H), 5.78 (dd, J=32,12Hz, 1H), 1.39 (s, 9H) ¹³**C NMR:** (101 MHz, DMSO-*d*₆) δ 156.24, 155.13, 150.04, 149.71, 147.28, 142.38, 129.89, 129.77, 125.41, 123.50, 120.31, 120.23, 79.47, 77.02, 52.04, 28.21, 28.06. ³¹**P NMR:** (162 MHz, DMSO-*d*₆) δ: 13.60 **HRMS (ESI+):** *m/z* calc'd for C₂₇H₂₃N₂O₇PNa [M+Na]⁺: 507.1311, found 507.1297

Tert-butyl ((diphenoxyphosphoryl)(4-(methylthio)phenyl)methyl)carbamate (36)

Yield: 17%, white solid

¹**H NMR:** (400 MHz, DMSO-*d*₆) δ: 8.44 (d, J=12 Hz, 1H), 7.57 (dd, J=8,4 Hz, 2H), 7.37 (td, J=8,4 Hz, 4H), 7.28 (d, J=8Hz, 2H), 7.20 (t, J=8Hz, 2H), 7.10 (d, J=8Hz, 2H), 7.04 (d, J=8Hz, 2H), 5.50 (dd, J=24,12 Hz, 1H), 2.48 (s, 3H), 1.40 (s, 9H)

¹³C NMR: (101 MHz, DMSO-*d*₆) δ 155.13, 150.21, 149.86, 138.34, 131.07, 129.83, 129.11, 125.72, 125.23, 120.36, 120.26, 79.14, 51.83, 28.12, 14.58.

³¹**P NMR:** (162 MHz, DMSO-*d*₆) δ: 15.49

HRMS (ESI+): *m/z* calc'd for C₂₇H₂₃N₂O₇PNa [M+Na]⁺: 508.1333, found 508.1323

Section 3: NMR studies

Figure S5: NMR study of Boc-removal from aldehyde (2) catalyzed by Lewis acid (Bi(OTf)₃)

¹H NMR ¹³C NMR and ³¹P NMR of synthesized compounds

¹H NMR spectrum of compound **1**

¹³C NMR spectrum of compound 1

³¹P NMR spectrum of compound 1

¹H NMR spectrum of compound **38**

¹³C NMR spectrum of compound **38**

³¹P NMR spectrum of compound **38**

¹H NMR spectrum of compound **2**

¹³C NMR spectrum of compound **2**

¹H NMR spectrum of compound 7

¹³C NMR spectrum of compound 7

¹H NMR spectrum of compound **4**

¹³C NMR spectrum of compound **4** (without ³¹P decoupling)
³¹P NMR spectrum of compound **4**

¹H NMR spectrum of compound 14

¹³C NMR spectrum compound **14** (without ³¹P decoupling)

³¹P NMR spectrum of compound 14

¹H NMR spectrum of compound **15**

¹³C NMR spectrum of compound **15** (without ³¹P decoupling)

³¹P NMR spectrum of compound **15**

¹H NMR spectrum of compound **16**

¹³C NMR spectrum of compound **16** (without ³¹P decoupling)

³¹P NMR spectrum of compound **16**

¹³C NMR spectrum of compound **17** (without ³¹P decoupling)

¹H NMR spectrum of compound **18**

¹³C NMR spectrum of compound **18** (without ³¹P decoupling)

³¹P NMR spectrum of compound **18**

¹³C NMR spectrum of compound **19** (without ³ ¹P decoupling)

³¹P-NMR spectra of compound **19**

¹H-NMR spectra of compound **20**

¹³C-NMR spectra of compound **20** (without ³¹P decoupling)

³¹P-NMR spectra of compound **20**

³¹P-NMR spectra of compound **21**

¹³C-NMR spectra of compound **22** (without ³¹P decoupling)

³¹P-NMR spectra of compound **22**

¹³C-NMR spectra of compound **23** (without ³¹P decoupling)

³¹P-NMR spectra of compound **23**

¹H-NMR spectra of compound **24**

¹³C-NMR spectra of compound **24** (without ³¹P decoupling)

³¹P-NMR spectra of compound **24**

¹H-NMR spectra of compound **25**

¹³C-NMR spectra of compound **25** (without ³¹P decoupling)

¹³C-NMR spectra of compound **26** (without ³¹P decoupling)

¹³C-NMR spectra of compound **27** (without ³¹P decoupling)

¹³C-NMR spectra of compound **28** (without ³¹P decoupling)

¹³C-NMR spectra of compound **29** (without ³¹P decoupling)

¹³C-NMR spectra of compound **30** (without ³¹P decoupling)

¹³C-NMR spectra of compound **31** (without ³¹P decoupling)

¹³C-NMR spectra of compound **32** (without ³¹P decoupling)

Comment [DC]: Updated figure

¹³C-NMR spectra of compound **35** (without ³¹P decoupling)

¹³C-NMR spectra of compound **36** (without ³¹P decoupling)

