Thermal plasma gasification of organic waste stream coupled with CO₂-sorption enhanced

reforming employing different sorbents for enhanced hydrogen production

Vineet Singh Sikarwar ^{a,b,c*}, Nageswara Rao Peela ^d, Arun Krishna Vuppaladadiyam ^{e,f,g}, Newton Libanio Ferreira ^h, Alan Maslani ^a, Ritik Tomar ^{b,i}, Michael Pohořelý ^b, Erik Meers ^c, Michal Jeremiáš ^a

^a Institute of Plasma Physics of the Czech Academy of Sciences, v. v. i., Za Slovankou 1782/3, 182 00 Prague 8, Czech Republic.

^b Department of Power Engineering, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic.

° Department of Green Chemistry and Technology, Ghent University, 9000 Ghent, Belgium.

^d Department of Chemical Engineering, Indian Institute of Technology, Guwahati, Assam -781039, India.

e Department of Civil & Environmental Engineering, Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong.

^f College of Science & Engineering, James Cook University, Townsville, Queensland, 4811, Australia.

^g Catalytic Reaction Engineering Lab, Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India. ^h University Center of FEI, São Bernardo do Campo, SP, 09850-901, Brazil

ⁱ ORLEN Unipetrol Centre for Research and Education (ORLEN UniCRE), Areál Chempark, Litvínov-Záluží 43670, Czech Republic.

Corresponding Author's Email Address: sikarwar@ipp.cas.cz; Phone# +420 703666310 (V.S. Sikarwar)

Supplementary Information

Index:

Table S1. Components of Aspen Plus flowsheet

Table S2. Empirical correlations to calculate H₂, CO, CO₂ and CH₄ yields during pyrolysis

Table S3. Hydrogen yield, dry gas yield and LHV of fuel gas employing CaO, MgO and Li_4SiO_4 with variable gasification temperature.

Table S4. Hydrogen yield, dry gas yield and LHV of fuel gas employing CaO, MgO and Li₄SiO₄ with variable reforming temperature.

Table S5. Hydrogen yield, dry gas yield and LHV of fuel gas employing CaO, MgO and Li_4SiO_4 with variable steam-to-feedstock ratio.

Table S6. Hydrogen yield, dry gas yield and LHV of fuel gas employing CaO, MgO and Li_4SiO_4 with variable sorbent-to-feedstock ratio.

Fig. S1. Variation in syngas constituents after gasification (Stage-I) with variable gasification temperature (800 to 1400 °C)

Block / stream	Туре	Objective	Basic condition (blocks)
employed			
Feedstock	Stream	RDF feed	-
Argon	Stream	Feed to plasma torch	-
Water	Stream	Feed to plasma torch	-
Plasma	Stream	Thermal plasma feed to gasifier	-
Feed to pyrolyzer	Stream	Feed from heater to pyrolyzer	-
Water	Stream	Feed to gasifier (Stage-I)	-
Feed to gasifier	Stream	Products of pyrolyzer and feed to gasifier	-
Gaseous products of gasifier	Stream	Gaseous products from gasifier and feed to reformer (Stage-II)	-
Solid carbon and ash	Stream	Output from gasifier	-
Sorbent	Stream	Sorbent feed to reformer	-
Final products	Stream	Product gases (primarily H_2 , CO, CO_2 and CH_4), solids and ash from reformer to Filter	-
Syngas	Stream	Gaseous species in final products	-
Solids / ash	Stream	Solid species in final products	-
HEATER	Block	Preheat the feed to pyrolyzer	T = 800 to 1400 °C; P = 1 bar
PLASMA TORCH	Block	Heater serving as DC water/Ar hybrid plasma torch	T = 800 to 1400 °C; P = 1 bar
PYROLYZER	Block	RYield reactor for pyrolysis (breaks down the feed into respective components)	T = 800 to 1400 °C; P = 1 bar
Calculator	Block	Calculator block calculates the respective yields of syngas constituents based on the temperature dependent empirical equations as mentioned in Table S2	-

 Table S1. Components of Aspen Plus flowsheet.

GASIFIER	Block	RGibbs reactor for gasification (based on the principle of Gibbs free energy minimization)	T = 800 to 1400 °C; P = 1 bar
FILTER	Block	SSplit to separate gaseous and solid products coming from gasifier	-
REFORMER	Block	RGibbs reactor for CO ₂ -sorption enhanced reforming reactions (based on the principle of Gibbs free energy minimization)	T = 500 to 800 °C (CaO); T = 200 to 500 °C (MgO); T = 400 to 700 °C (Li ₄ SiO ₄); P = 1 bar
FILTER	Block	SSplit to separate product gases and solids coming from reformer	-

Table S2. Empirical correlations to calculate H₂, CO, CO₂ and CH₄ yields during pyrolysis.

Gas (vol %)	Empirical equation
Hydrogen	0.04694T _p - 16.96286
Carbon monoxide	$0.0371T_p + 19.961$
Carbon dioxide	$0.000143(T_p)^2 - 0.27808T_p + 139.948$
Methane	- $9 \times 10^{-5} (T_p)^2 + 0.1221 T_p$ - 25.206

* $T_p = Pyrolysis$ temperature in degree Celsius

Table S3. Hydrogen yield, dry gas yield and LHV of fuel gas employing CaO, MgO and Li_4SiO_4 with variable gasification temperature.

Variable/Sorbent	CaO	MgO	Li ₄ SiO ₄
H ₂ Yield (kg/kg of fuel)	0.14	0.0057	0.059
Dry gas Yield (kg/kg of fuel)	0.54	0.53	0.68
LHV (MJ/Nm ³)	13	18	14

Table S4. Hydrogen yield, dry gas yield and LHV of fuel gas employing CaO, MgO and Li₄SiO₄ with variable reforming temperature.

Variable/Sorbent	CaO							MgO							Li ₄ SiO ₄						
Temperature	500	550	600	650	700	750	800	200	250	300	350	400	450	500	400	450	500	550	600	650	700
(°C)																					
H ₂ Yield (kg/kg	0.139	0.139	0.142	0.146	0.153	0.150	0.151	0.0047	0.0067	0.0090	0.013	0.023	0.037	0.057	0.043	0.053	0.066	0.079	0.104	0.129	0.145
of fuel)																					
Dry gas Yield	0.28	0.28	0.32	0.45	0.92	1.4	1.4	0.42	0.42	0.48	0.91	0.97	1.02	1.08	0.40	0.45	0.58	1.17	1.29	1.34	1.36
(kg/kg of fuel)																					
LHV (MJ/Nm ³)	12	12	12	11	9.8	8.8	8.7	13	13	12	11	10	10	9.6	13	12	11	9.3	9.4	9.1	8.8

Table S5. Hydrogen yield, dry gas yield and LHV of fuel gas employing CaO, MgO and Li_4SiO_4 with variable steam-to-feedstock ratio.

Variable/Sorbent	CaO							MgO							Li ₄ SiO ₄						
S/F	0.8	1.0	1.2	1.4	1.6	1.8	2.0	0.8	1.0	1.2	1.4	1.6	1.8	2.0	0.8	1.0	1.2	1.4	1.6	1.8	2.0
H ₂ Yield (kg/kg	0.12	0.14	0.15	0.17	0.19	0.21	0.22	0.0043	0.0057	0.0069	0.0081	0.0092	0.0103	0.0127	0.053	0.059	0.065	0.074	0.084	0.093	0.101
of fuel)																					
Dry gas Yield	0.48	0.54	0.61	0.57	0.61	0.66	0.70	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.57	0.68	0.83	0.93	0.97	1.0	1.1
(kg/kg of fuel)																					
LHV (MJ/Nm ³)	13	13	13	12	10	9.5	9.0	22	18	16	14	12	11	9.8	15	14	13	12	10	9.5	8.7

Table S6. Hydrogen yield, dry gas yield and LHV of fuel gas employing CaO, MgO and Li_4SiO_4 with variable sorbent-to-feedstock ratio.

Variable/Sorbent	CaO						MgO							Li ₄ SiO ₄							
SOR/F	0.0	0.5	1.0	1.5	2.0	2.5	3.0	0.0	0.5	1.0	1.5	2.0	2.5	3.0	0.0	0.5	1.0	1.5	2.0	2.5	3.0
H ₂ Yield (kg/kg of fuel)	0.12	0.13	0.13	0.14	0.14	0.14	0.14	0.0027	0.0029	0.0057	0.0057	0.0057	0.0057	0.0057	0.057	0.057	0.058	0.059	0.059	0.060	0.060
Dry gas Yield (kg/kg of fuel)	1.5	1.1	0.80	0.54	0.54	0.54	0.54	0.78	0.65	0.53	0.53	0.53	0.53	0.53	1.1	0.97	0.86	0.76	0.68	0.65	0.65
LHV (MJ/Nm ³)	9.8	11	12	13	13	13	13	10	15	18	18	18	18	18	9.6	10	11	13	14	15	15

Fig. S1. Variation in syngas constituents after gasification (Stage-I) with variable gasification temperature (800 to 1400 °C)