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Fig. S1. The fitting curve of Mn 2p3/2 in the XPS spectra of the undoped samples of LMO and 
HMO.

Fig. S2. The adsorption capacity and removal rate of HMO at various pH.
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Fig. S3. The adsorption capacity of HMO: (a) various initial adsorption concentration, (b) various 

temperature .

Fig. S4 The selectivity experiments of HMO.

Table S1 Contrast of adsorption capcaity in the present work with other works.

adsorbent solution CLi+ (mmol/L) qe (mg/g) refs

Li1.6AlxMn1.6-xO LiOH 50 32.6 [9]

Li1.6Mn1.6-xCrxO4 salt lake 32 31.67 [10]

Li1.6Mn1.6O4 salt lake 38.3 27.15 [11]

LiMn2O4 foams LiOH 345 20.9 [12]

H1.6Mn1.6O4/PA

N
LiCl/LiOH 5 10.3 [13]

HMO/Al2O3 seawater 4.3 6.2 [14]

HMO-Al-5% LiCl 6 29.9 [15]

HMO-SAl LiCl 6 33.7 This work



First principles calculations

Density functional theory (DFT) [1, 2] calculations were implemented by the Vienna 

Ab-initio Simulation Package (VASP) with the projector-augmented wave (PAW) [3] 

method, and the Perdew-Burke-Ernzerh (PBE) exchange-correlation functional [4] of 

the Generalized Gradient Approximation (GGA) [5-7]. Owing to the strong-correlation 

d-electrons of Mn metals, the Hubbard-type U correction was adopted. In order to gain 

accurate computation, the U values of 4.5 eV [8] were used. The cutoff energy of 500 

eV was adopted in all calculations. The thickness of the vacuum is set to the 15 Å. An 

appropriate k-point mesh of 6×6×6 and 3×3×1 for Bulk and the Li4Mn5O12 (100) 

surface was adopted, respectively. In order to improve the quality of DOS and charge, 

the k-point mesh of 4×4×1was adopted. The electronic total energies convergence 

criterion was set at 10–4 eV. The atomic positions were stable until Hellmann-Feynman 

forces on each atom were less than a threshold value of 0.01 eV.
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