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Fig. S1. The fitting curve of Mn 2p;,, in the XPS spectra of the undoped samples of LMO and
HMO.
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Fig. S2. The adsorption capacity and removal rate of HMO at various pH.
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Fig. S3. The adsorption capacity of HMO: (a) various initial adsorption concentration, (b) various

temperature .
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Fig. S4 The selectivity experiments of HMO.

Table S1 Contrast of adsorption capcaity in the present work with other works.

adsorbent solution CLi+ (mmol/L) g (mg/g) refs
Li; ¢AltMn, ¢,O LiOH 50 32.6 [9]
Li; éMn; 6.4<CryO4 salt lake 32 31.67 [10]
Li; éMn; ¢O4 salt lake 38.3 27.15 [11]
LiMn,0, foams LiOH 345 20.9 [12]

H; ¢Mn; s04/PA
LiCl/LiOH 5 10.3 [13]

N

HMO/AI)O; seawater 4.3 6.2 [14]
HMO-AI-5% LiCl 6 29.9 [15]

HMO-SAI LiCl 6 33.7 This work




First principles calculations

Density functional theory (DFT) [1, 2] calculations were implemented by the Vienna
Ab-initio Simulation Package (VASP) with the projector-augmented wave (PAW) [3]
method, and the Perdew-Burke-Ernzerh (PBE) exchange-correlation functional [4] of
the Generalized Gradient Approximation (GGA) [5-7]. Owing to the strong-correlation
d-electrons of Mn metals, the Hubbard-type U correction was adopted. In order to gain
accurate computation, the U values of 4.5 eV [8] were used. The cutoff energy of 500
eV was adopted in all calculations. The thickness of the vacuum is set to the 15 A. An
appropriate k-point mesh of 6x6x6 and 3x3x1 for Bulk and the Li4Mn5012 (100)
surface was adopted, respectively. In order to improve the quality of DOS and charge,
the k-point mesh of 4x4x1was adopted. The electronic total energies convergence
criterion was set at 10—4 eV. The atomic positions were stable until Hellmann-Feynman

forces on each atom were less than a threshold value of 0.01 eV.
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