Electronic Supplementary Information

for

N-C Bond Formation Between Two Anilines Coordinated to a

Ruthenium Center in a Cis-form Affording a

3,5-Cyclohexadiene-1,2-diimine Moiety

Nozomi Tomioka, Shinkoh Nanbu, Tomoyo Misawa-Suzuki and Hirotaka Nagao* Department of Materials and Life Sciences, Faculty of Science and Technology,

Sophia University

7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554 (Japan)

NMR spectroscopy

Dianiline complexes and diimine complexes (10 mg) were dissolved in 1 cm³ of DMSO- d^6 (a and b), methanol- d^4 (c) and nitromethane- d^3 (d and e), respectively. The solutions were transferred to a cell ($\phi = 5$ mm) with simple filtration using a syringe equipped with a membrane filter. ¹H and ¹³C NMR spectra were shown in Fig. S1 and S2.

Fig. S1 ¹H NMR spectra.

(a) cis-[Ru^{II}(NH₂C₆H₅)₂(bpy)₂](CF₃SO₃)₂ [**1**](CF₃SO₃)₂, (b) cis-[Ru(NH₂C₆H₄(4-CH₃))₂(bpy)₂]-(CF₃SO₃)₂ [**2**](CF₃SO₃)₂, (c) trans-[Ru(NH₂C₆H₃(2,6-F₂))₂(bpy)₂](CF₃SO₃)₂ [**3**](CF₃SO₃)₂, (d) cis-[Ru^{II}(NHC₆H₄NC₆H₅)(bpy)₂](PF₆)₂ [**4**](PF₆)₂ and (e) cis-[Ru^{II}(NHC₆H₃(4-CH₃)NC₆H₄(4-CH₃))-(bpy)₂](PF₆)₂ [**5**](PF₆)₂.

Fig. S2 ¹³C NMR spectra.

(a) cis-[Ru^{II}(NH₂C₆H₅)₂(bpy)₂](CF₃SO₃)₂ [**1**](CF₃SO₃)₂, (b) cis-[Ru(NH₂C₆H₄(4-CH₃))₂(bpy)₂]-(CF₃SO₃)₂ [**2**](CF₃SO₃)₂, (c) trans-[Ru(NH₂C₆H₃(2,6-F₂))₂(bpy)₂](CF₃SO₃)₂ [**3**](CF₃SO₃)₂, (d) cis-[Ru^{II}(NHC₆H₄NC₆H₅)(bpy)₂](PF₆)₂ [**4**](PF₆)₂ and (e) cis-[Ru^{II}(NHC₆H₃(4-CH₃)NC₆H₄(4-CH₃))-(bpy)₂](PF₆)₂ [**5**](PF₆)₂.

IR spectroscopy

IR spectra for dianiline and diimine complexes were obtained by integration of sixteen times in the range from 4000 to 400 cm⁻¹.

Fig. S3 IR spectra of cis-[Ru^{II}(NH₂C₆H₅)₂(bpy)₂](CF₃SO₃)₂ [1](CF₃SO₃)₂ (a), cis-[Ru(NH₂C₆H₄(4-CH₃))₂(bpy)₂](CF₃SO₃)₂ (b), trans-[Ru(NH₂C₆H₃(2,6-F₂))₂(bpy)₂](CF₃SO₃)₂ [3](CF₃SO₃)₂ (c), cis-[Ru^{II}(NHC₆H₄NC₆H₅)(bpy)₂](PF₆)₂ [4](PF₆)₂ (d) and cis-[Ru^{II}(NHC₆H₃(4-CH₃))C₆H₄(4-CH₃))(bpy)₂](PF₆)₂ [5](PF₆)₂ (e).

UV-vis spectroscopy

UV-vis spectra were obtained using a square quartz cell with an optical path length of 1.0 cm. Electronic spectra of four dianiline and diimine complexes in H₂O are shown in Fig. S4 and Table S1. UV-vis spectra of $[Ru^{II}(NH_2C_6H_5)_2(bpy)_2]^{2+}$ [1]²⁺ and $[Ru^{II}(NHC_6H_4NC_6H_5)(bpy)_2]^{2+}$ [4]²⁺ were calculated by time-dependent density-functional theory (Fig. S5 and S6).

Fig. S4 UV-vis spectra of *cis*-[Ru^{II}(NH₂C₆H₅)₂(bpy)₂](CF₃SO₃)₂ [**1**](CF₃SO₃)₂ (black), *cis*-[Ru(NH₂C₆H₄(4-CH₃))₂(bpy)₂](CF₃SO₃)₂ [**2**](CF₃SO₃)₂ (blue), *trans*-[Ru(NH₂C₆H₃(2,6-F₂))₂-(bpy)₂](CF₃SO₃)₂ [**3**](CF₃SO₃)₂ (purple), *cis*-[Ru^{II}(*N*HC₆H₄*N*C₆H₅)(bpy)₂](PF₆)₂ [**4**](PF₆)₂ (green) and *cis*-[Ru^{II}(*N*HC₆H₃(4-CH₃)*N*C₆H₄(4-CH₃))(bpy)₂](PF₆)₂ [**5**](PF₆)₂ (light green).

Table S1 Maximal	absorption	wavelengths	of ruthenium	complexes
------------------	------------	-------------	--------------	-----------

complex	$\lambda_{\rm max} \left(\varepsilon \times 10^{-4} /{\rm mol^{-1}}~{\rm dm^3~cm^{-1}} \right)$		
cis-[Ru ^{II} (NH ₂ C ₆ H ₅) ₂ (bpy) ₂](CF ₃ SO ₃) ₂ [1](CF ₃ SO ₃) ₂	340 (0.537)	479 (0.673)	
cis-[Ru(NH ₂ C ₆ H ₄ (4-CH ₃)) ₂ (bpy) ₂](CF ₃ SO ₃) ₂ [2](CF ₃ SO ₃) ₂	340 (0.532)	481 (0.669)	
$\textit{trans-}[Ru(NH_2C_6H_3(2,6-F_2))_2(bpy)_2](CF_3SO_3)_2[\textbf{3}](CF_3SO_3)_2$	341 (0.616)	487 (1.02)	
cis -[Ru ^{II} ($NHC_{6}H_{4}NC_{6}H_{5}$)(bpy) ₂](PF ₆) ₂ [4](PF ₆) ₂	421 (0.622)	520 (1.33)	
cis -[Ru($NHC_{6}H_{3}(4-CH_{3})NC_{6}H_{4}(4-CH_{3}))(bpy)_{2}](PF_{6})_{2}$ [5](PF ₆) ₂	425 (0.672)	524 (1.27)	

Fig. S5 UV-vis spectra of cis-[Ru^{II}(NH₂C₆H₅)₂(bpy)₂]²⁺ [**1**]²⁺ (found value: black, calculated value: blue).

Fig. S6 UV-vis spectra of cis-[Ru^{II}($NHC_6H_4NC_6H_5$)(bpy)₂]²⁺ [4]²⁺ (found value: black, calculated value: blue).

Electrochemical measurements

Cyclic voltammograms of cis-[Ru^{II}(NH₂C₆H₅)₂(bpy)₂](CF₃SO₃)₂ [**1**](CF₃SO₃)₂ in water-dimethyl sulfoxide (2:3 (ν : ν)) mixed solutions at pH 2.77, 4.65, 6.06 and 7.90 were shown in Fig. S7. Pourbaix diagram is plotted on pH vs. the oxidation potentials as shown in Fig. S8.

Fig. S7 Cyclic voltammograms of cis-[Ru^{II}(NH₂C₆H₅)₂(bpy)₂](CF₃SO₃)₂ [**1**](CF₃SO₃)₂ in water-dimethyl sulfoxide (2:3 (ν/ν)) at pH 2.77, 4.65, 6.06 and 7.90.

Fig. S8 Pourbaix diagrams of cis-[Ru^{II}(NH₂C₆H₅)₂(bpy)₂](CF₃SO₃)₂ [1](CF₃SO₃)₂.

DFT Calculations

All calculations were performed with the Gaussian 09 program. The geometry optimizations were performed at the B3LYP level of density functional theory with the Los Alamos effective core potential plus DZ (LANL2DZ).

Fig. S9 LUMO and HOMO or SOMO of $[Ru^{II}(NH_2C_6H_5)_2(bpy)_2]^{2+}$ ([1]²⁺), $[Ru(NH_2C_6H_5)_2(bpy)_2]^{3+}$ ([1]³⁺), $[Ru(NHC_6H_5)(NH_2C_6H_5)(bpy)_2]^{2+}$ ([1]³⁺ - H⁺).

	[1] ²⁺	[1] ³⁺	[1] ³⁺ -H ⁺
Ru-N1 _{aniline}	2.2592	2.2305	2.2478
$Ru-N2_{aniline \ or \ aminyl}$	2.2592	2.2305	2.0366
Ru-N3-N6 _{bpy}	2.0767 - 2.1102	2.0821 - 2.1207	2.0826 - 2.1234
N1C1	1.4767	1.4900	1.4747
N2C7	1.4767	1.4900	1.3905
C1-C2	1.4065	1.4069	1.4064
C2-C3	1.4066	1.4069	1.4070
C3-C4	1.4090	1.4100	1.4086
C4-C5	1.4076	1.4087	1.4079
C5-C6	1.4079	1.4081	1.4073
C6-C1	1.4059	1.4059	1.4063
С7-С8	1.4065	1.4069	1.4352
C8-C9	1.4066	1.4069	1.3968
C9-C10	1.4090	1.4100	1.4143
C10-C11	1.4076	1.4087	1.4139
C11-C12	1.4079	1.4081	1.3984
C12-C7	1.4059	1.4059	1.4281

Table S2 Metric parameters of $[Ru^{II}(NH_2C_6H_5)_2(bpy)_2]^{2+}$ [1]²⁺, the one-electron oxidized complex [1]³⁺, and the deprotonated species of the one-electron oxidized complex [1]³⁺-H⁺.

aamulay	MO	V of opened	% of composition	
complex	MO	ev of energy	Ru	Ligand*
(\mathbf{D}_{11})	LUMO	-7.74	3	66
$[Ku^{-}(1NH_{2}C_{6}H_{5})_{2}(Upy)_{2}]^{-}([I]^{-})$	HOMO	-11.07	64	6
$[\mathbf{D}_{11}](\mathbf{N} \mathbf{U} \subset \mathbf{U} \setminus \mathbf{N} \subset \mathbf{U} \setminus (\mathbf{b}_{12}) = 12 + ([\mathbf{A}]^2 + (\mathbf{b}_{12}))$	LUMO	-8.73	16	69
$[Ku^{(1)}\Pi C_6\Pi_4 I^{(1)}C_6\Pi_5)(OPy)_2]^{2}$ ([4] ²¹)	НОМО	-11.10	38	39

*Ligand: aniline or diimine ligand

Fig. S10 LUMO and HOMO or SOMO of $[Ru^{II}(NHC_6H_4NC_6H_5)(bpy)_2]^{2+}$ [4]²⁺, $[Ru(NHC_6H_4NC_6H_5)(bpy)_2]^+$ [4]⁺ (one-electron reduced form) and $[Ru(NHC_6H_4NC_6H_5)(bpy)_2]^{3+}$ [4]³⁺ (one-electron oxidized form).

Oxidation of anilne complexes.

Oxidation reaction of *cis*-[Ru(NH₂C₆H₄(4-CH₃))₂(bpy)₂](CF₃SO₃)₂ [**2**](CF₃SO₃)₂ in H₂O by four molar equivalents of oxidants ((NH₄)₄[Ce^{IV}(SO₄)₄]·2H₂O) were carried out (Fig. S11). The spectrum after 2 hours was consistent with that of *cis*-[Ru(*N*HC₆H₃(4-CH₃)*N*C₆H₄(4-CH₃))(bpy)₂](PF₆)₂ [**5**](PF₆)₂. The formation of [**5**]²⁺ occurs more slowly than that of [**4**]²⁺. Assuming these oxidation reactions are pseudo-first-order reactions, the rate constants in the oxidation reaction of [**1**]²⁺ and [**2**]²⁺ were roughly estimated to $7x10^{-4}$ and $3x10^{-4}$, respectively.

An oxidation reaction of cis-[Ru(NH₂C₆H₅)₂(bpy)₂](CF₃SO₃)₂ [**1**](CF₃SO₃)₂ by four molar equivalents of oxidants in the presence of ten molar equivalents of radical scavengers (2,2,6,6-tetramethylpiperidine 1-oxyl) was carried out (Fig. S12). Changes in absorbances were observed during the oxidation reactions of cis-[Ru^{II}(NH₂C₆H₅)₂(bpy)₂](CF₃SO₃)₂ [**1**](CF₃SO₃)₂ (520 nm, black) and cis-[Ru(NH₂C₆H₄(4-CH₃))₂(bpy)₂](CF₃SO₃)₂ [**2**](CF₃SO₃)₂ (524 nm, blue) as shown in Fig. S13.

Fig. S11 Oxidation reaction of *cis*-[Ru(NH₂C₆H₄(4-CH₃))₂(bpy)₂](CF₃SO₃)₂ [**2**](CF₃SO₃)₂ in the presence of four molar equivalents of the oxidant; before oxidation (black), after oxidation 30 seconds (green), and 2 hours (blue).

Fig. S12 Oxidation reaction of *cis*- $[Ru(NH_2C_6H_5)_2(bpy)_2](CF_3SO_3)_2$ [**1**](CF₃SO₃)₂in the presence of four molar equivalents of the oxidant and 10 equivalents of radical scavengers before oxidation (black) and after oxidation (blue).

Fig. S13 Change in absorbance during the oxidation reactions of cis-[Ru^{II}(NH₂C₆H₅)₂(bpy)₂](CF₃SO₃)₂ [**1**](CF₃SO₃)₂ (black) and cis-[Ru(NH₂C₆H₄(4-CH₃))₂(bpy)₂]-(CF₃SO₃)₂ [**2**](CF₃SO₃)₂ (blue).

X-ray structural analysis

The crystallographic data and selected bond distances and angles are summarized in Table S4. Structures of *cis*-[Ru(NH₂C₆H₄(4-CH₃))₂(bpy)₂]²⁺ ([**2**]²⁺) and *cis*-[Ru(*N*HC₆H₃(4-CH₃)*N*C₆H₄(4-CH₃))(bpy)₂]²⁺ ([**5**]²⁺) are shown in Fig. S14 and S15.

Fig. S14 Structure of *cis*-[Ru(NH₂C₆H₄(4-CH₃))₂(bpy)₂]²⁺ [**2**]²⁺ showing 50 % thermal ellipsoid probability.

Fig. S15 Structure of *cis*-[Ru^{II}(*N*HC₆H₃(4-CH₃)*N*C₆H₄(4-CH₃))(bpy)₂]²⁺ [**5**]²⁺ showing 50 % thermal ellipsoid probability.

	[1] ²⁺	[2] ²⁺	[3] ²⁺	[4] ²⁺	[5] ²⁺
formula	$C_{34}H_{30}N_6F_6O_6RuS_2$	$C_{36}H_{34}N_6F_6O_6RuS_2$	$C_{34}H_{26}F_{10}N_6O_6RuS_2$	$C_{32}H_{26}N_6P_2F_{12}Ru$	$C_{34}H_{30}F_{12}N_6P_2Ru$
molecular weight	897.83	925.88	969.80	885.60	913.65
crystal color	red	red	red	black	black
habit	block	block	block	block	block
crystal dimensions	0.10 x 0.10 x 0.10	0.10 x 0.10 x 0.10	0.10 x 0.10 x 0.13	0.13 x 0.13 x 0.16	0.10 x 0.10 x 0.10
crystal system	monoclinic	monoclinic	triclinic	monoclinic	triclinic
space group	$P2_1/n$ (#14)	<i>P</i> 2 ₁ / <i>n</i> (#14)	P-1 (#2)	$P2_1/n$ (#14)	P-1 (#2)
<i>a</i> / Å	11.25790(10)	11.23880(10)	10.00630(10)	13.31180(10)	13.27250(10)
b / Å	17.1076(2)	22.2125(3)	10.2443(2)	18.79730(10)	13.51310(10)
<i>c</i> / Å	19.0176(2)	15.9788(2)	10.4305(2)	13.97790(10)	13.79670(10)
β / °	95.9820(10)	91.1880(10)	93.0320(10)	97.4170(10)	103.0590(10)
$V/Å^3$	3642.76(7)	3988.12(8)	946.35(3)	3468.37(4)	1977.56(3)
Ζ	4	4	1	4	2
$D_{\rm c}$ / g cm ⁻³	1.637	1.542	1.702	1.696	1.534
$\mu / \text{cm}^{-1}(\text{Cu}K\alpha)$	5.311	4.869	5.321	5.440	4.789
T/K	298.15	298.15	298.15	298.15	298.15
transmission factors	0.85671 - 1.00000	0.80411 - 1.00000	0.32571 - 1.00000	0.93290 - 1.00000	0.53776 - 1.00000
$2\theta_{ m max}$ / °	55.0	55.0	55.0	55.0	55.0
total reflections	25740	29966	9898	25055	23385
unique reflections	7325	8005	3755	6959	7921
$R_1^{(a)}$ (I > 2.00 σ (I))	0.0324	0.0520	0.0543	0.0346	0.0500
$wR_2^{(b)}$ ($I > 10.00\sigma(I)$)	0.0839	0.1548	0.1540	0.0970	0.1417
Rint	0.0296	0.0311	0.0829	0.0266	0.0355
GOF	1.068	1.157	1.076	1.064	1.050

Table S4 Crystallographic data of dianiline and diimine complexes

a) $R = \Sigma ||F_o| - |F_c|| / \Sigma |F_o| (I > 2\sigma(I)), b) wR_2 = [\Sigma(w(F_o^2 - F_c^2)^2) / \Sigma w(F_o^2)^2]^{1/2}$