DBU mediated One Pot Synthesis of Triazolotriazine isomers via Dimroth Type Rearrangement.

Ab Majeed Ganai^a, Tabasum Khan Pathan^a, Nisar Sayyad^a, Babita Kushwaha^a, Narva Deshwar Kushwaha^a, Andreas G. Tzakos^b, Rajshekhar Karpoormath^a*

^a Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban 4000, South Africa.

^b Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, 45110, Greece.

SUPPORTING INFORMATION

Table of Contents:

1.	Experiment	.S2
2.	General consideration	S3
3.	Synthesis and spectral characterisation	.S3
4.	Reference	.S18
5.	X-ray crystallographic structure of 2e	.S19
6.	¹ H, ¹³ C NMR and Mass spectra	.S21
7.	Elemental analysis	.S69

1. Experiment:

The reaction was performed in 10 ml glass reaction tube at room temperature. 4,4'-(6-hydrazinyl-1,3,5-triazine-2,4-diyl)dimorpholine and simple benzaldehyde resulted in schiff base formation in 10mins and was monitored by TLC. Addition of NBS led to spontaneous reaction forming isomer 1 and it took 20 mins for its completion. The spot was isolated and characterised by NMR. Next step was addition of DBU which resulted in formation of isomer 2 in 2-4h. The progress of the reaction was monitored by TLC. The isomer 2 on TLC appeared as bluish rather than its isomer 1.

The equivalents of DBU influenced the reaction rate drastically, the 2 eq. of DBU gave the isomer 2 in about 45 mins. The progress of reaction using different equivalents of DBU was studied for isomer 2 as shown in **Figure S1**.

Figure S1: Visualisation of isomer-1and isomer-2 (**2a**) under UV lamp with 254nm. (A= Authentic spot for **2a**)

Addition of water caused precipitation the product (isomer 2) and followed by the filtration. 1.5 eq. of DBU resulted in high yield % as compared to 2.0 eq. of DBU and it saved the super-equivalents of reagent.

2. General consideration

All the required chemicals and solvents used in this research work were purchased from commercial suppliers Sigma Aldrich, Alfa Aesar and Merck. For Thin-layered chromatography (TLC) precoated with silica gel plates were used for monitoring the progress of the reaction which was procured from E. Merck and Co. (Darmstadt, Germany) and visualized under UV lamp (254 or 365 nm). Melting point for the synthesized compounds was obtained from digital Stuart SMP10 melting point apparatus. The compounds were characterized by Bruker Alpha FT-IR spectrometer using the ATR technique in the 400-4000cm⁻¹ spectral range. The NMR (¹H &¹³C) spectra were obtained Bruker AVANCE III 400

MHz spectrometer using deuterated solvents- $CDCl_3$ and DMSO. Tetramethylsilane (TMS) was used as an internal standard at δ 0.0 parts per million (ppm) and the coupling constants (*J*) were stated in Hertz. The NMR multiplicities were abbreviated as s for singlet, d for doublet, dd for doublet of doublet, t for triplet, q for quartet and m for multiplet.

3. Synthesis

3.1. Synthesis and spectral characterization of 1a, 3a and 4a.

The starting materials 1a, 3a and 4a were synthesised by the previously reported method.¹

3.2. Synthesis of Schiff base:

In a 10 mL glass reaction tubes equipped with a magnetic stirrer **1a** (200mg, 1 eq) was placed in 2ml of methanol. To this solution was added 2,3-dimethoxybenzaldehyde (95.3mg, 1 eq) and allowed to stir at room temperature for 20-30 mins resulting in a Schiff base and the same was monitored by the TLC. Next, addition of water (2-3ml) in reaction vessel and filtration resulted in white solid with 96% yield.

3.2.1(E)-4,4'-(6-(2-(2,3-dimethoxybenzylidene)hydrazinyl)-1,3,5-triazine-2,4-diyl)di

morpholine (Schiff base);

White solid, Yield: 96%; ¹H NMR (400 MHz, CDCl₃, δ ppm): 9.39 (s, 1H), 8.13 7.59 (s, 1H), 7.60 (d, J = 7.83 Hz, 1H), 7.00 (t, J = 7.30 Hz, 1H), 6.84 (d, J = 8.08 Hz, 1H), 3.81-3.79 (m, 10H), 3.74-3.73 (m, 4H), 3.69-3.67 (m, 8H) ; ¹³C NMR (100 MHz, CDCl₃, δ ppm): 165.35, 164.91, 164.15, 152.63, 147.94, 138.73, 128.15, 124.12, 118.05, 113.15, 66.78, 61.51, 55.73, 43.69 ; MS *m/z* (ESI) calcd for C₂₀H₂₇N₇O₄ 429.21, found 430.0 [M + H]⁺.

3.3. *A* General procedure for synthesis and spectral characterization of 2 (a-o), 5(a-e), 6(a-c) and 7 (a-b);

In a 10 mL glass reaction tubes equipped with a magnetic stirrer **1a**, **3a**, or **4a** (200mg, 1 eq.) was placed in 2ml of methanol. To this solution was added aldehydes (1 eq.) and allowed to stir at room temperature (20-30 mins), resulting in respective Schiff base and the same was monitored by the TLC. To the Schiff base NBS (1eq.) was slowly added to the reaction mixture and allowed to stir at room temperature for 5-30 mins, yielding isomer-1, which when treated with 1.5 eq. of DBU resulted in isomerisation to give isomer-2. After the completion of reaction, 2-3 ml of ice-cold water was added to the crude reaction mixture leading to the Precipitation, which was filtered, washed with pentane and vacuum dried to afford the final products in good to excellent yields 65-95%.

3.3.B General procedure for synthesis and spectral characterization of 1b, 3(b, c) and 4(b-d);

In a 10 mL glass reaction tubes equipped with a magnetic stirrer **1a**, **3a**, or **4a** (200mg, 1 eq.) was placed in 2ml of methanol. To this solution was added aldehydes (1 eq.) and allowed to stir at room temperature for 10-30 mins, resulting in the formation of respective Schiff bases. Further slow addition of NBS (1eq.) to this reaction mixture and stirred at room temperature (5-30 mins) yielded isomer-**1**. The crude reaction mixture was poured onto an ice-clod water (2-3ml) resulting in a precipitate. The precipitate was then filtered and washed with pentane and vacuum dried to afford the final products with yields ranging 83-89%.

3.3.C General procedure for Gram scale synthesis of 2a.

The gram scale reaction was performed to further validate this synthetic procedure. The reaction was carried out using **1a** (1g) with Benzaldehyde (0.38g) and stirred for 30 min. The NBS (1.26g, 1eq) was added slowly and stirred till we get new spot for isomer-1 followed by slow addition of DBU (1.5eq) which results in isomerisation to give **2a**. After the completion of reaction, 30-40 ml of ice-cold water was added to the crude reaction mixture leading to the Precipitation, which was filtered, washed with pentane (20ml) and vacuum dried. The product **2a** was obtained in good yields (1.1g, 84%).

3.3.1 4,4'-(2-phenyl-[1,2,4]triazolo[1,5-a][1,3,5]triazine-5,7-diyl)dimorpholine (2a);

White solid, Yield: 85%; ¹H NMR (400 MHz, CDCl₃, δ ppm): 8.22-8.20 (m, 2H), 7.44-7.43 (m, 3H), 4.33 (s, 4H), 3.87 (t, *J* = 4.40Hz, 8H), 3.73 (t, *J* = 4.43Hz, 4H), ; ¹³C NMR (100 MHz, CDCl₃, δ ppm): 163.23, 161.52, 152.44, 149.05, 130.52, 130.23, 128.61, 127.42, 66.81, 66.72, 47.20, 44.70. MS *m/z* calcd for C₁₈H₂₁N₇O₂ 367.18 found 368.0 [M + H]⁺. Anal.Calcd for C₁₈H₂₁N₇O₂: C, 58.84; H, 5.76; N, 26.69; Found: C, 57.98; H, 6.03; N, 26.25.

3.3.2 4,4'-(2-(p-tolyl)-[1,2,4]triazolo[1,5-a][1,3,5]triazine-5,7-diyl)dimorpholine (2b);

White solid, Yield: 96% ; ¹H NMR (400 MHz, CDCl₃, δ ppm): 8.08 (d, J = 7.56 Hz, 2H), 7.23 (d, J = 7.31 Hz, 2H), 4.32 (s, 4H), 3.85 (s, 8H), 3.72 (s, 4H), 2.38 (s, 3H) ; ¹³C NMR (100 MHz, CDCl₃, δ ppm): 163.73, 161.70, 159.57, 149.21, 140.51, 129.25, 127.81, 127.37, 66.79, 66.70, 47.25, 44.73, 21.51 ; MS *m/z* calcd for C₁₉H₂₃N₇O₂ 381.19, found 382.0 [M + H]⁺. Anal.Calcd for C₁₉H₂₃N₇O₂: C, 59.83; H, 6.08; N, 25.70; Found: C, 58.31; H, 6.41; N, 25.01.

3.3.3 4,4'-(2-(4-methoxyphenyl)-[1,2,4]triazolo[1,5-a][1,3,5]triazine-5,7-diyl)dimorpholine (2c);

White solid, Yield: 85%; ¹H NMR (400 MHz, CDCl₃, δ ppm): 8.20 (s, 2H), 6.90 (s, 2H), 4.34 (s, 4H), 3.95-3.85 (m, 11H), 3.75 (s, 4H) ; ¹³C NMR (100 MHz, CDCl₃, δ ppm): 161.59,

159.42, 149.10, 128.06, 122.86, 114.03, 66.84, 66.74, 55.45, 47.22, 44.73; MS *m/z* calcd for C₁₉H₂₃N₇O₃ 397.19, found 398.0 [M + H]⁺. Anal.Calcd for C₁₉H₂₃N₇O₃: C, 57.42; H, 5.83; N, 24.67; Found: C, 56.85; H, 6.08; N, 24.25.

3.3.4 4,4'-(2-(3-methoxyphenyl)-[1,2,4]triazolo[1,5-a][1,3,5]triazine-5,7-diyl)dimorpholine (2d);

White solid, Yield: 81%; ¹H NMR (400 MHz, CDCl₃, δ ppm): 7.77-7.75 (m, 2H), 7 .32 (t, *J* = 8.15 Hz, 1H), 6.98-6.95 (m, 1H), 4.31(s, 4H), 3.86-3.83(m, 11H), 3.72 (t, *J* = 4.75 Hz, 4H) ; ¹³C NMR (100 MHz, CDCl₃, δ ppm): 163.52, 161.73, 159.84, 159.43, 149.07, 131.84, 129.60, 119.62, 116.76, 112.32, 66.80, 66.71, 55.53, 47.15, 43.87 ; MS *m/z* calcd for C₁₉H₂₃N₇O₃ 397.19, found 398.0 [M + H]⁺. Anal.Calcd for C₁₉H₂₃N₇O₃: C, 57.42; H, 5.83; N, 24.67; Found: C, 56.57; H, 6.15; N, 24.28.

3.3.5 4,4'-(2-(2,3-dimethoxyphenyl)-[1,2,4]triazolo[1,5-a][1,3,5]triazine-5,7diyl)dimorpholine (**2e**);

White solid, Yield: 85%; ¹H NMR (400 MHz, DMSO- d_6 , δ ppm): 7.65 (d, J = 8.43 Hz, 1H), 7.59 (s, 1H), 7.06 (d, J = 8.39 Hz, 1H), 4.24 (s, 4H), 3.83 (s, 3H), 3.81 (s, 3H), 3.78-3.76 (m, 4H), 3.75-3.72 (m, 4H), 3.66-3.64 (m, 4H) ; ¹³C NMR (100 MHz, DMSO, δ ppm): 162.24, 161.02, 158.87, 150.65, 148.66, 148.52, 122.83, 119.70, 111.64, 109.96, 65.88, 65.76, 55.54, 55.49, 46.73, 44.05; MS *m*/*z* calcd for C₂₀H₂₅N₇O₄ 427.20, found 428.0 [M + H]⁺. Anal.Calcd for C₂₀H₂₅N₇O₄: C, 56.20; H, 5.90; N, 22.94; Found: C, 55.82 ; H, 6.13; N, 22.68.

3.3.6 4,4'-(2-(2,4-dimethoxyphenyl)-[1,2,4]triazolo[1,5-a][1,3,5]triazine-5,7diyl)dimorpholine dimorpholine (2f);

White solid, Yield: 79%; ¹H NMR (400 MHz, CDCl₃, δ ppm): 8.14 (d, J = 8.64 Hz, 1H), 6.59-6.53 (m, 2H), 4.34 (s, 4H), 3.94-3.93 (m, 1H), 3.89 (s, 3H), 3.86-3.84 (m, 10H), 3.73-3.71 (m, 4H); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 162.58, 159.52, 159.48, 149.06, 132.81, 112.27, 105.00, 99.30, 66.73, 56.11, 55.53, 47.14, 44.61; MS *m/z* calcd for C₂₀H₂₅N₇O₄ 427.20, found 428.0 [M + H]⁺. Anal.Calcd for C₂₀H₂₅N₇O₄: C, 56.20; H, 5.90; N, 22.94; Found: C, 53.88; H, 6.03; N, 21.50.

3.3.7 4,4'-(2-(2-chlorophenyl)-[1,2,4]triazolo[1,5-a][1,3,5]triazine-5,7-diyl)dimorpholine (2g);

White solid, Yield: 96%; ¹H NMR (400 MHz, CDCl₃, δ ppm): 8.20-8.17 (m, 1H), 7.48-7.46 (m, 1H), 7.36-7.32 (m, 2H), 4.35 (s, 4H), 3.84 (t, *J* = 4.61 Hz, 8H), 3.72 (t, *J* = 4.61 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 161.95, 160.95, 159.55, 149.02, 132.93, 132.24, 131.06. 130.74, 129.21, 126.84, 66.82, 66.74, 47.18, 44.57; MS *m*/*z* calcd for C₁₈H₂₀ClN₇O₂ 401,14, found 402.0 [M + H]⁺. Anal.Calcd for C₁₈H₂₀ClN₇O₂: C, 53.80; H, 5.02; N, 24.40; Found: C, 53.49; H, 5.34; N, 24.29.

3.3.8 4,4'-(2-(2-chlorophenyl)-[1,2,4]triazolo[1,5-a][1,3,5]triazine-5,7-diyl)dimorpholine (2h);

White solid, Yield: 93%; ¹H NMR (400 MHz, CDCl₃, δ ppm): 8.16 (s, 1H), 8.08 (d, *J* = 7.11 Hz, 1H), 7.40-7.33 (m, 2H), 4.32 (s, 4H), 3.86 (t, *J* = 4.38 Hz, 8H), 3.72 (t, *J* = 4.63 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 162.40, 161.77, 159.42, 149.02, 134.58, 132.32, 130.35, 129.92, 127.27, 125.57, 66.79, 66.70, 47.18, 44.43; MS *m*/*z* calcd for C₁₈H₂₀ClN₇O₂ 401.14 found 402.0 [M + H]⁺. Anal.Calcd for C₁₈H₂₀ClN₇O₂: C, 53.80; H, 5.02; N, 24.40; Found: C, 51.50; H, 5.59; N, 23.28.

3.3.9 4,4'-(2-(4-chlorophenyl)-[1,2,4]triazolo[1,5-a][1,3,5]triazine-5,7-diyl)dimorpholine (2i);

White solid, Yield: 95%; ¹H NMR (400 MHz, CDCl₃, δ ppm): 8.12 (d, J = 8.70 Hz, 2H), 7.39 (d, J = 8.62 Hz, 2H), 4.32 (s, 4H), 3.86 (t, J = 4.71 Hz, 8H), 3.73 (t, J = 4.75 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 162.62, 161.74, 159.45, 149.04, 136.46, 128.98, 128.87, 128.69, 66.82, 66.72, 47.22, 44.61; MS *m/z* calcd for C₁₈H₂₀ClN₇O₂ 401.14, found 402.0 [M + H]⁺. Anal.Calcd for C₁₈H₂₀ClN₇O₂: C, 53.80; H, 5.02; N, 24.40; Found: C, 53.44; H, 5.30; N, 24.06.

3.3.10 4,4'-(2-(4-bromophenyl)-[1,2,4]triazolo[1,5-a][1,3,5]triazine-5,7-diyl)dimorpholine (2j);

White solid, Yield: 89%; ¹H NMR (400 MHz, CDCl₃, δ ppm): 8.04 (d, J = 8.20 Hz, 2H), 7.54 (d, J = 8.24 Hz, 2H), 4.31 (s, 4H), 3.86 (t, J = 4.39 Hz, 8H), 3.73 (t, J = 4.39 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 162.30, 161.51, 159.41, 148.95, 131.83, 129.18, 128.93, 124.96, 66.80, 66.70, 47.21, 44.65; MS *m/z* calcd for C₁₈H₂₀BrN₇O₂ 445.09, found 446 [M + H]⁺. Anal.Calcd for C₁₈H₂₀BrN₇O₂: C, 48.44; H, 4.52; N, 21.97; Found: C, 47.83; H, 4.75; N, 24.49.

3.3.11 4,4'-(2-(3-fluorophenyl)-[1,2,4]triazolo[1,5-a][1,3,5]triazine-5,7-diyl)dimorpholine (2k);

White solid, Yield: 84%; ¹H NMR (400 MHz, CDCl₃, δ ppm): 8.00 (d, J = 7.68 Hz, 1H), 7.87 (d, J = 9.69 Hz, 1H), 7.42-7.37 (m, 1H), 7.14-7.10 (m, 1H), 4.32 (s, 4H), 3.87 (s, 8H), 3.73 (s, 4H); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 164.19, 162.05, 161.75, 161.45, 159.42, 148.98, 132.38-132.30 (d, $J_{C-F} = 7.97$ Hz, 1C), 130.32-130.24 (d, $J_{C-F} = 8.12$ Hz, 1C), 123.24-123.21 (d, $J_{C-F} = 2.81$ Hz, 1C), 117.55-117.34 (d, $J_{C-F} = 21.31$ Hz, 1C), 114.34-114.11(d, $J_{C-F} = 23.58$ Hz, 1C), 66.81, 66.71, 47.24, 44.84; MS *m/z* calcd for C₁₈H₂₀FN₇O₂ 385.17 found 386.0 [M + H]⁺. Anal.Calcd for C₁₈H₂₀FN₇O₂: C, 56.10; H, 5.23; N, 25.44; Found: C, 55.58; H, 5.39; N, 25.27.

3.3.12 4,4'-(2-(4-fluorophenyl)-[1,2,4]triazolo[1,5-a][1,3,5]triazine-5,7-diyl)dimorpholine (21);

White solid Yield: 90%; ¹H NMR (400 MHz, CDCl₃, δ ppm): 8.18 (s, 2H), 7.10 (t, J = 8.05 Hz, 2H), 4.31 (s, 4H), 3.85 (t, J = 4.53 Hz, 8H), 3.72 (t, J = 4.26 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 165.62, 163.13, 159.37, 129.47-129.38 (d, $J_{C-F} = 8.52$ Hz, 1C), 126.47-126.43 (d, $J_{C-F} = 3.31$ Hz, 1C), 115.83-115.62 (d, $J_{C-F} = 21.90$ Hz, 1C), 66.82, 66.72, 47.24, 44.79 ; MS *m/z* calcd for C₁₈H₂₀FN₇O₂ 385.17 found 386.0 [M + H]⁺. Anal.Calcd for C₁₈H₂₀FN₇O₂: C, 56.10; H, 5.23; N, 25.44; Found: C, 55.29; H, 5.47; N, 24.77.

3.3.13 4,4'-(2-(3,4-difluorophenyl)-[1,2,4]triazolo[1,5-a][1,3,5]triazine-5,7diyl)dimorpholine (**2m**);

White solid, Yield: 86%; ¹H NMR (400 MHz, CDCl₃, δ ppm): 8.02-7.97 (m, 2H), 7.24-7.17 (m, 1H), 4.32 (s, 4H), 3.87 (t, J = 4.60 Hz, 8H), 3.73 (t, J = 4.60 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 161.55-161.42 (d, $J_{C-F} = 12.67$ Hz, 1C), 159.42, 153.28-153.16 (d, $J_{C-F} = 12.92$ Hz, 1C), 151.79-151.66 (d, $J_{C-F} = 12.92$ Hz, 1C), 150.78-150.65 (d, $J_{C-F} = 12.92$ Hz, 1C), 149.32-149.20 (d, $J_{C-F} = 12.06$ Hz, 1C), 148.96, 127.36-127.32 (d, $J_{C-F} = 4.33$ Hz, 1C), 124.00-123.90 (q, $J_{C-F} = 3.23$ Hz, 1C), 117.69-117.62 (d, $J_{C-F} = 17.95$ Hz, 1C), 116.55-116.36 (d, $J_{C-F} = 19.51$ Hz, 1C), 66.79, 66.69, 47.23, 44.81; MS *m/z* calcd for C₁₈H₁₉F₂N₇O₂ 403.16 found 426.0 [M + Na]⁺. Anal.Calcd for C₁₈H₁₉F₂N₇O₂: C, 53.59; H, 4.75; N, 24.31; Found: C, 53.65; H, 4.93; N, 24.33.

3.3.14 4,4'-(2-(pyridin-3-yl)-[1,2,4]triazolo[1,5-a][1,3,5]triazine-5,7-diyl)dimorpholine (2n);

Pale yellow solid , Yield: 70% ; ¹H NMR (400 MHz, CDCl₃, δ ppm): 9.38 (s, 1H), 8.65 (d, J = 3.59 Hz, 1H), 8.46 (d, J = 7.90 Hz, 1H), 7.40-7.37 (m, 1H), 4.33 (s, 4H), 3.87 (t, J = 5.01 Hz, 8H), 3.73 (t, J = 5.01 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 161.91, 161.46, 159.46, 150.77, 149.04, 148.35, 134.98, 126.81, 123.66, 66.78, 66.68, 47.22, 43.76 ; MS *m/z* calcd for C₁₇H₂₀N₈O₂ 368.17 found 369.0 [M + H]⁺. Anal.Calcd for C₁₇H₂₀N₈O₂: C, 55.43; H, 5.47; N, 30.42; Found: C, 54.30; H, 5.72; N, 29.70.

3.3.15 4,4'-(2-(thiophen-2-yl)-[1,2,4]triazolo[1,5-a][1,3,5]triazine-5,7-diyl)dimorpholine (20);

Light brown solid, Yield: 77% ; ¹H NMR (400 MHz, CDCl₃, δ ppm): 7.83 (d, J = 3.46 Hz, 1H), 7.40 (d, J = 4.96 Hz, 1H), 7.10 (t, J = 4.10 Hz, 1H), 4.30 (s, 4H), 3.86 (t, J = 4.50 Hz, 8H), 3.72 (t, J = 4.64 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃, δ ppm):161.61, 159.89, 159.50, 148.99, 133.52, 128.60, 128.18, 127.91, 66.82, 66.73, 47.17, 44.06 ; MS *m/z* calcd for C₁₆H₁₉N₇O₂S 373.13 found 374.0 [M + H]⁺. Anal.Calcd for C₁₆H₁₉N₇O₂S: C, 51.46; H, 5.13; N, 26.26; Found: C, 48.80; H, 5.19; N, 24.71.

3.3.16 4,4'-(3-(4-bromophenyl)-[1,2,4]triazolo[4,3-a][1,3,5]triazine-5,7-diyl)dimorpholine (1b);

White solid, Yield: 89% ; ¹H NMR (400 MHz, DMSO- d_6 , δ ppm): 7.86 (d, J = 8.46 Hz, 2H), 7.71 (d, J = 8.46 Hz, 2H), 3.93 (s, 2H), 3.87 (s, 2H), 3.72 (s, 4H), 3.36-3.34 (m, 4H), 3.20-3.18 (m, 4H) ; ¹³C NMR (100 MHz, DMSO, δ ppm): 158.68, 155.07, 150.85, 142.71, 132.17, 130.69, 125.15, 124.78, 65.91, 65.70, 64.66, 49.37, 44.49 ; MS *m/z* (ESI) calcd for C₁₈H₂₀BrN₇O₂ 445.09, found 446.0 [M + H]⁺. Anal.Calcd for C₁₈H₂₀BrN₇O₂: C, 48.44; H, 4.52; N, 21.97; Found: C, 48.23; H, 4.43; N, 21.63.

3.3.17 3-(4-bromophenyl)-5,7-di(piperidin-1-yl)-[1,2,4]triazolo[4,3-a][1,3,5]triazine (3b);

White solid, Yield: 84%; ¹H NMR (400 MHz, CDCl₃, δ ppm): 7.59-7.52 (m, 4H), 3.83 (s, 4H), 3.11 (t, J = 5.27 Hz, 4H), 1.66-1.60 (m, 6H), 1.49-1.43 (m, 2H), 1.31-1.26 (m, 4H); ¹³C NMR (100 MHz, CDCl₃, δ ppm):159.23, 158.03, 152.34, 142.80, 131.73, 129.94, 127.18, 124.01, 50.21, 24.65, 24.34, 23.76; MS *m/z* (ESI) calcd for C₂₀H₂₄BrN₇ 441.13, found 442.0 [M + H]⁺. Anal.Calcd for C₂₀H₂₄BrN₇: C, 54.30; H, 5.47; N, 22.16; Found: C, 52.85; H, 5.43; N, 21.25.

3.3.18 5,7-di(piperidin-1-yl)-3-(thiophen-2-yl)-[1,2,4]triazolo[4,3-a][1,3,5]triazine (3c);

White solid, Yield: 83% ; ¹H NMR (400 MHz, CDCl₃, δ ppm): 7.83 (d, J = 3.13 Hz, 1H), 7.36 (d, J = 5.07 Hz, 1H), 7.09-7.06 (m, 1H), 4.17 (s, 4H), 3.80 (s, 4H), 1.71 (s, 6H), 1.64-1.63 (m, 2H), 1.58-1.57 (m, 4H) ; ¹³C NMR (100 MHz, CDCl₃, δ ppm): 161.82, 159.31, 159.09, 148.79, 133.97, 128.17, 127.74, 127.69, 48.08, 25.98, 24.81, 24.56 ; MS *m/z* (ESI) calcd for C₁₈H₂₃N₇S 369.17 found 370.0 [M + H]⁺. Anal.Calcd for C₁₈H₂₃N₇S : C, 58.51; H, 6.27; N, 26.54; Found: C, 58.09; H, 6.87; N, 26.34.

3.3.19 3-(4-bromophenyl)-5,7-bis(4-methylpiperidin-1-yl)-[1,2,4]triazolo[4,3a][1,3,5]triazine (**4b**);

White solid, Yield: 87%; ¹H NMR (400 MHz, CDCl₃, δ ppm): 7.59-7.52 (m, 4H), 4.82-4.70 (m, 3H), 3.62-3.59 (m, 2H), 2.96-2.88 (m, 2H), 2.63 (t, *J* = 12.47 Hz, 2H), 1.72-1.65 (m, 3H), 1.43 (d, *J* = 10.94 Hz, 3H), 1.16-1.14 (m, 2H), 0.94 (d, *J* = 6.12 Hz, 3H), 0.81 (d, *J* = 5.76 Hz, 4H) ; ¹³C NMR (100 MHz, CDCl₃, δ ppm): 159.03, 158.06, 152.17, 142.78, 131.74, 130.01, 127.09, 124.10, 49.59, 33.49, 31.15, 30.35, 21.80, 21.56 ; MS *m/z* (ESI) calcd for

C₂₂H₂₈BrN₇ 469.16, found 470.0 [M + H]⁺. Anal.Calcd for C₂₂H₂₈BrN₇ : C, 56.17; H, 6.00; N, 20.84; Found: C, 54.23; H, 5.90; N, 20.11.

3.3.20 3-(4-(benzyloxy)phenyl)-5,7-bis(4-methylpiperidin-1-yl)-[1,2,4]triazolo[4,3a][1,3,5]triazine (**4c**);

White solid, Yield: 88%; ¹H NMR (400 MHz, CDCl₃, δ ppm): 7.57 (d, J = 8.60 Hz, 2H), 7.43-7.35 (m, 4H), 7.32 (d, J = 7.05 Hz, 1H), 7.04 (d, J = 8.68 Hz, 2H), 5.11 (s, 2H), 4.82-4.60 (m, 2H), 4.60-4.33 (m, 1H), 3.64 (d, J = 12.59 Hz, 2H), 2.92 (s, 2H), 2.62 (t, J = 12.22 Hz, 2H), 1.73-1.63 (m, 3H), 1.42 (d, J = 10.87 Hz, 3H), 1.21-1.15 (m, 2H), 0.95 (d, J = 6.28 Hz, 3H), 0.81 (d, J = 6.05 Hz, 4H) ; ¹³C NMR (100 MHz, CDCl₃, δ ppm): 160.10, 158.12, 158.07, 152.21, 143.49, 136.45, 130.11, 128.73, 128.23, 127.51, 120.60, 115.03, 70.26, 49.67, 32.54, 31.14, 30.33, 21.80, 21.61 ; MS *m/z* (ESI) calcd for C₂₉H₃₅N₇O 497.29, found 498.0 [M + H]⁺. Anal.Calcd for C₂₉H₃₅N₇O : C, 69.99; H, 7.09; N, 19.70; Found: C, 67.22; H, 7.20; N, 18.89.

3.3.21 5,7-bis(4-methylpiperidin-1-yl)-3-(p-tolyl)-[1,2,4]triazolo[4,3-a][1,3,5]triazine (4d);

White solid, Yield: 89% ; ¹H NMR (400 MHz, CDCl₃, δ ppm): 7.53 (d, J = 7.90 Hz, 2H), 7.27 (d, J = 7.64 Hz, 2H), 4.86-4.73 (m, 2H), 4.52-4.29 (m, 1H), 3.67-3.64 (m, 2H), 2.99-2.90 (m, 2H), 2.64 (t, J = 12.48 Hz, 2H), 1.42 (s, 3H), 1.76-1.64 (m, 3H), 1.43 (d, J = 11.76 Hz, 3H), 1.23-1.14 (m, 2H), 0.98 (d, J = 6.41 Hz, 3H), 0.81 (d, J = 6.00 Hz, 4H) ; ¹³C NMR (100 MHz, CDCl₃, δ ppm): 158.31, 128.12, 152.18, 149.77, 140.19, 129.28, 128.49, 125.08, 49.64, 32.46, 31.15, 30.30, 21.80, 21.57, 21.51 ; MS *m/z* (ESI) calcd for C₂₃H₃₁N₇ 405.26,

found 406.0 $[M + H]^+$. Anal.Calcd for $C_{23}H_{31}N_7$: C, 68.12; H, 7.71; N, 24.28; Found: C, 64.64; H, 7.75; N, 22.64.

3.3.22 2-phenyl-5,7-di(piperidin-1-yl)-[1,2,4]triazolo[1,5-a][1,3,5]triazine (5a);

White solid, Yield: 89%; ¹H NMR (400 MHz, CDCl₃, δ ppm): 8.26-8.24 (m, 2H), 7.44-7.43 (m, 3H), 4.23 (s, 4H), 3.83(s, 4H), 1.75 (s, 6H), 1.67-1.66 (m, 2H), 1.61-1.60 (m, 4H); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 161.85, 159.31, 148.91, 130.71, 130.15, 128.50, 127.36, 48.15, 45.26, 26.04, 25.93, 24.85, 24.60; MS *m/z* (ESI) calcd for C₂₀H₂₅N₇ 363.22, found 364.0 [M + H]⁺. Anal.Calcd for C₂₀H₂₅N₇: C, 66.09; H, 6.93; N, 26.98; Found: C, 65.16; H, 7.23; N, 26.76.

3.3.23 2-(2-chlorophenyl)-5,7-di(piperidin-1-yl)-[1,2,4]triazolo[1,5-a][1,3,5]triazine (5b);

White solid, Yield: 92%; ¹H NMR (400 MHz, CDCl₃, δ ppm): 8.23-8.21 (m, 1H), 7.47-7.46 (m, 1H), 7.33-7.31 (m, 2H), 4.24 (s, 4H), 3.82 (s, 4H), 1.73 (s, 6H), 1.67-1.64 (m, 2H), 1.60-1.59 (m, 4H); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 161.35, 161.30, 159.35, 148.79, 132.85, 132.13, 130.90, 130.29, 126.66, 126.62, 48.07, 45.25, 26.03, 25.87, 24.79, 24.53; MS *m*/*z* (ESI) calcd for C₂₀H₂₄ClN₇ 397.18, found 398.0 [M + H]⁺. Anal.Calcd for C₂₀H₂₄ClN₇: C, 60.37; H, 6.08; N, 24.64; Found: C, 65.16; H, 6.72; N, 26.58.

3.3.24 2-(4-chlorophenyl)-5,7-di(piperidin-1-yl)-[1,2,4]triazolo[1,5-a][1,3,5]triazine (5c);

White solid, Yield: 91%; ¹H NMR (400 MHz, CDCl₃, δ ppm): 8.17 (d, J = 8.41 Hz, 2H), 7.40 (d, J = 8.33 Hz, 2H), 4.21 (s, 4H), 3.83 (s, 4H), 1.75 (s, 6H), 1.67-1.66 (m, 2H), 1.60-1.59 (m, 4H); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 162.12, 161.99, 159.26, 148.84, 135.90, 129.55, 128.66, 128.55, 48.07, 45.21, 25.99, 25.89, 24.80, 24.54; MS *m/z* (ESI) calcd for C₂₀H₂₄ClN₇ 397.18, found 398.0 [M + H]⁺. Anal.Calcd for C₂₀H₂₄ClN₇: C, 60.37; H, 6.08; N, 24.64; Found: C, 59.89; H, 6.27; N, 24.47.

3.3.25 2-(4-bromophenyl)-5,7-di(piperidin-1-yl)-[1,2,4]triazolo[1,5-a][1,3,5]triazine (5d);

White solid, Yield: 87%; ¹H NMR (400 MHz, CDCl₃, δ ppm): 8.11 (d, J = 8.38 Hz, 2H), 7.56 (d, J = 8.43 Hz, 2H), 4.21 (s, 4H), 3.83 (s, 4H), 1.75 (s, 6H), 1.67-1.66 (m, 2H), 1.60-1.59 (m, 4H); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 161.93, 161.77, 159.27, 148.83, 131.70, 129.78, 128.87, 124.48, 48.15, 45.35, 26.02, 25.92, 24.83, 24.57; MS *m/z* (ESI) calcd for C₂₀H₂₄BrN₇ 441.13, found 442.0 [M + H]⁺. Anal.Calcd for C₂₀H₂₄BrN₇: C, 54.30; H, 5.47; N, 22.16; Found: C, 54.40; H, 5.77; N, 21.95.

3.3.26 2-(3-fluorophenyl)-5,7-di(piperidin-1-yl)-[1,2,4]triazolo[1,5-a][1,3,5]triazine (5e);

White solid, Yield: 86% ; ¹H NMR (400 MHz, CDCl₃, δ ppm): 8.04 (s, 1H), 7.72 (d, J = 9.34 Hz, 1H), 7.42-7.37 (m, 1H), 7.11 (t, J = 8.33 Hz, 1H), 4.21 (s, 4H), 3.83 (s, 4H), 1.75 (s, 6H), 1.67-1.66 (m, 2H), 1.60-1.59 (m, 4H); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 164.17, 161.74, 159.26, 148.89, 133.16-133.07 (d, $J_{C-F} =$ 8.87 Hz, 1C), 130.12-130.04 (d, $J_{C-F} =$ 8.20

Hz, 1C), 123.06-123.04 (d, $J_{C-F} = 2.82$ Hz, 1C), 117.02-116.80 (d, $J_{C-F} = 21.59$ Hz, 1C), 114.20-113.97 (d, $J_{C-F} = 23.27$ Hz, 1C), 48.15, 45.23, 26.02, 25.91, 24.82, 24.56 ; MS *m/z* (ESI) calcd for C₂₀H₂₄FN₇ 381.21, found 382.0 [M + H]⁺. Anal. Calcd for C₂₀H₂₄FN₇: C, 62.97; H, 6.34; N, 25.70; Found: C, 62.68; H, 6.47; N, 25.56.

3.3.27 5,7-bis(4-methylpiperidin-1-yl)-2-phenyl-[1,2,4]triazolo[1,5-a][1,3,5]triazine (6a);

White solid, Yield: 88%; ¹H NMR (400 MHz, CDCl₃, δ ppm): 8.23-8.21 (m, 2H), 7.43-7.41 (m, 3H), 5.34 (s, 2H), 4.80-4.61 (m, 2H), 3.10 (t, J = 12.44 Hz, 2H), 2.86 (t, J = 12.44 Hz, 2H), 1.82-1.59 (m, 6H), 1.38-1.28 (m, 2H), 1.20-1.10 (m, 2H), 0.99 (d, J = 6.24 Hz, 3H), 0.95 (d, J = 6.44 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 162.97, 162.10, 159.30, 148.94, 130.99, 130.02, 128.45, 127.28, 47.39, 44.62, 34.21, 31.31, 31.13, 21.94, 21.78; MS *m/z* (ESI) calcd for C₂₄H₂₉N₇ 391.25, found 392.0 [M + H]⁺. Anal.Calcd for C₂₄H₂₉N₇: C, 67.49; H, 7.47; N, 25.04; Found: C, 66.13; H, 7.88; N, 24.51.

3.3.28 2-(4-fluorophenyl)-5,7-bis(4-methylpiperidin-1-yl)-[1,2,4]triazolo[1,5-a][1,3,5]triazine (6b);

White solid, Yield: 86%; ¹H NMR (400 MHz, CDCl₃, δ ppm): 8.23-8.20 (m, 2H), 7.13-7.08 (m, 2H), 5.32 (s, 2H), 4.83-4.59 (m, 2H), 3.11 (t, *J* = 12.63 Hz, 2H), 2.87 (t, *J* = 12.63 Hz, 2H), 1.82-1.60 (m, 6H), 1.38-1.28 (m, 2H), 1.20-1.10 (m, 2H), 0.99 (d, *J* = 6.34 Hz, 3H), 0.95 (d, *J* = 6.34 Hz, 3H) ; ¹³C NMR (100 MHz, CDCl₃, δ ppm): 165.33, 162.85, 162.08, 159.27, 148.87, 129.29-129.21 (d, *J*_{C-F} = 8.63 Hz, 1C), 127.20-127.17 (d, *J*_{C-F} = 3.05 Hz, 1C), 115.56-115.34 (d, *J*_{C-F} = 21.93 Hz, 1C), 47.38, 44.67, 34.18, 31.28, 31.10, 21.92, 21.75 ; MS

m/*z* (ESI) calcd for C₂₂H₂₈FN₇ 409.24, found 410.0 [M + H]⁺. Anal.Calcd for C₂₂H₂₈FN₇: C, 64.53; H, 6.89; N, 23.94; Found: C, 63.64; H, 6.93; N, 23.50.

3.3.29 2-(4-chlorophenyl)-5,7-bis(4-methylpiperidin-1-yl)-[1,2,4]triazolo[1,5-a][1,3,5]triazine (6c);

White solid, Yield: 90%; FTIR (ATR, V_{max} , cm⁻¹): 3470.65 (Amide N-H Str.), 2919.78 (Alkyl C-H Str.),1628.03 (Amide C=O Str.); ¹H NMR (400 MHz, CDCl₃, δ ppm): 8.16 (d, J = 8.54 Hz, 2H), 7.39 (d, J = 8.42 Hz, 2H), 5.31 (s, 2H), 4.84-4.73 (m, 2H), 3.11 (t, J = 12.57 Hz, 2H), 2.87 (t, J = 12.26 Hz, 2H), 1.83-1.60 (m, 6H), 1.38-1.28 (m, 2H), 1.20-1.10 (m, 2H), 0.99 (d, J = 6.38 Hz, 3H), 0.95 (d, J = 6.31 Hz, 3H) ; ¹³C NMR (100 MHz, CDCl₃, δ ppm): 161.73, 159.27, 138.82, 136.23, 129.11, 128.82, 128.71, 47.50, 44.75, 34.23, 31.31, 31.14, 21.95, 21.79; MS *m/z* (ESI) calcd for C₂₂H₂₈ClN₇ 425.21, found 426.0 [M + H]⁺. Anal.Calcd for C₂₂H₂₈ClN₇: C, 62.03; H, 6.63; N, 23.02; Found: C, 61.78; H, 6.67; N, 22.87.

3.3.30 (E)-4,4'-(2-styryl-[1,2,4]triazolo[1,5-a][1,3,5]triazine-5,7-diyl)dimorpholine (7a);

White solid, Yield: 84%; ¹H NMR (400 MHz, CDCl₃, δ ppm): 7.83 (d, J = 16.15 Hz, 1H), 7.54 (d, J = 7.18 Hz, 2H), 7.37-7.34 (m, 2H), 7.30 (d, J = 7.15 Hz, 1H), 6.98 (d, J = 16.12 Hz, 1H), 4.28 (s, 4H), 3.84 (t, J = 4.74 Hz, 8H), 3.72 (t, J = 4.99 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 163.28, 161.19, 159.53, 149.03, 138.04, 136.21, 128.96, 128.84, 127.40, 117.21, 66.81, 66.72, 47011, 44.60; MS *m/z* (ESI) calcd for C₂₀H₂₃N₇O₂ 393.19, found 394.0 [M + H]⁺. Anal.Calcd for C₂₀H₂₃N₇O₂: C, 61.05; H, 5.89; N, 24.92; Found: C, 59.83; H, 6.18; N, 23.93.

dimorpholine (7b);

White solid, Yield: 82%; ¹H NMR (400 MHz, CDCl₃, δ ppm): 7.90 (s, 1H), 7.44-7.43 (m, 2H), 7.36 (t, *J* = 7.56 Hz, 2H), 7.27-7.24 (m, 1H), 4.30 (s, 4H), 3.84 (t, *J* = 4.61 Hz, 8H), 3.72 (t, *J* = 4.80 Hz, 4H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 166.25, 161.24, 159.50, 149.05, 137.19, 133.52, 129.65, 128.31, 127.40, 127.20, 66.79, 66.69, 47.10, 44.60, 14.51; MS *m/z* (ESI) calcd for C₂₁H₂₅N₇O₂ 407.21, found 408.0 [M + H]⁺. Anal.Calcd for C₂₁H₂₅N₇O₂: C, 61.90; H, 6.18; N, 24.06; Found: C, 59.25; H, 6.63; N, 22.84.

4. References:

 El-faham A, Soliman SM, Ghabbour HA, Albericio F. Ultrasonic promoted synthesis of novel s -triazine-Schiff base derivatives ; molecular structure , spectroscopic studies and their preliminary anti-proliferative activities. *J Mol Struct*. 2016;1125:121-135. doi:10.1016/j.molstruc.2016.06.061 5. X-ray crystallographic structures of 2e.

Method of crystallization: The compound **2e** was dissolved in isopropanol in a conical flask and heated till the solution was reduced to half. The hot solution was then closed using aluminium foil and kept in dark for slow evaporation. The slow evaporation of the solutions leads to the formation of crystals which were further taken for the X-ray crystallographic studies.

Datablock 20zs_rk_a2_aldol_ipa_0m - ellipsoid plot

Figure S2. Crystal structure of 2e (CCDC No. 2053179)

Identification code	2e
Empirical formula	$C_{20}H_{25}N_7O_4$
Formula weight	427.47
Temperature/K	150.0
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	11.320(3)
b/Å	12.339(3)
c/Å	15.403(4)
α/°	90
β/°	109.964(14)
$\gamma/^{\circ}$	90
Volume/Å ³	2022.3(9)
Z	4
$\rho_{calc}g/cm^3$	1.404
μ/mm^{-1}	0.101
F(000)	904.0
Crystal size/mm ³	0.23 imes 0.17 imes 0.08
Radiation	MoKα ($\lambda = 0.71073$)
2Θ range for data collection/°	3.9 to 52.346
Index ranges	$-8 \le h \le 14, -15 \le k \le 12, -19 \le l \le 19$
Reflections collected	13314
Independent reflections	3995 [$R_{int} = 0.0206, R_{sigma} = 0.0228$]
Data/restraints/parameters	3995/0/282
Goodness-of-fit on F ²	1.031
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0384, wR_2 = 0.0979$
Final R indexes [all data]	$R_1 = 0.0507, wR_2 = 0.1064$
Largest diff. peak/hole / e Å ⁻³	0.33/-0.21

 Table S1: X-ray crystallographic data and structure refinement.

8. NMR Spectra: ¹H NMR, ¹³C NMR and Mass spectra

¹³C NMR spectrum for schiff base (CDCl₃, 100 MHz)

Spectrum Name: SB-15 Start Ion: 100 End Ion: 1200 Source: ESI + 3.5kV 350C Capillary: 150V 300C Offset: 25V Span: 0V

Mass spectrum for schiff base

¹H NMR spectrum for compound **2a** (CDCl₃, 400 MHz)

Spectrum Name: DIM-01 Start Ion: 100 End Ion: 2000 Source: ESI + 3.5kV 350C Capillary: 150V 300C Offset: 25V Span: 0V

Mass spectrum for 2a

¹H NMR spectrum for compound **2b** (CDCl₃, 400 MHz)

¹³C NMR spectrum for compound **2b** (CDCl₃, 100 MHz)

Spectrum Name: dim16 Start Ion: 100 End Ion: 2000 Source: ESI + 3.5kV 350C Capillary: 150V 300C Offset: 25V Span: 0V

¹H NMR spectrum for compound **2c** (CDCl₃, 400 MHz)

¹³C NMR spectrum for compound **2c** (CDCl₃, 100 MHz)

¹³C NMR spectrum for compound **2d** (CDCl₃, 100 MHz)

Spectrum Name: dim20 Start Ion: 100 End Ion: 2000 Source: ESI + 3.5kV 350C Capillary: 150V 300C Offset: 25V Span: 0V

¹H NMR spectrum for compound **2e** (DMSO-d6, 400 MHz)

¹³C NMR spectrum for compound **2e** (DMSO-d6, 100 MHz)

Spectrum Name: dim15 Start Ion: 100 End Ion: 2000 Source: ESI + 3.5kV 350C Capillary: 150V 300C Offset: 25V Span: 0V

Mass spectrum for 2e

¹³C NMR spectrum for compound **2f** (CDCl₃, 100 MHz)

Spectrum Name: dim17 Start Ion: 100 End Ion: 2000 Source: ESI + 3.5kV 350C Capillary: 150V 300C Offset: 25V Span: 0V

¹H NMR spectrum for compound **2g** (CDCl₃, 400 MHz)

¹³C NMR spectrum for compound **2g** (CDCl₃, 100 MHz)

Spectrum Name: DIM-03 Start Ion: 100 End Ion: 2000 Source: ESI + 3.5kV 350C Capillary: 150V 300C Offset: 25V Span: 0V

Mass spectrum for 2g

¹³C NMR spectrum for compound **2h** (CDCl₃, 100 MHz)

Spectrum Name: DIM-02 Start Ion: 100 End Ion: 2000 Source: ESI + 3.5kV 350C Capillary: 150V 300C Offset: 25V Span: 0V

¹H NMR spectrum for compound **2i** (CDCl₃, 400 MHz)

 ^{13}C NMR spectrum for compound 2i (CDCl_3, 100 MHz)

Spectrum Name: DIM-04 Start Ion: 100 End Ion: 2000 Source: ESI + 3.5kV 350C Capillary: 150V 300C Offset: 25V Span: 0V

Mass spectrum for 2i

¹³C NMR spectrum for compound **2j** (CDCl₃, 100 MHz)

Mass spectrum for 2j

¹H NMR spectrum for compound **2k** (CDCl₃, 400 MHz)

¹³C NMR spectrum for compound **2k** (CDCl₃, 100 MHz)

Spectrum Name: dim18 Start Ion: 100 End Ion: 2000 Source: ESI + 3.5kV 350C Capillary: 150V 300C Offset: 25V Span: 0V

Mass spectrum for 2k

¹H NMR spectrum for compound **2I** (CDCl₃, 400 MHz)

¹³C NMR spectrum for compound **2l** (CDCl₃, 100 MHz)

Start Ion: 100 End Ion: 1200 Source: ESI + 3.5kV 350C Capillary: 150V 300C Offset: 25V Span: 0V

NMR spectrum for compound 2m (CDCl₃, 400 MHz)

¹³C NMR spectrum for compound **2m** (CDCl₃, 100 MHz)

Spectrum Name: dim27 Start Ion: 100 End Ion: 2000 Source: ESI + 3.5kV 350C Capillary: 150V 300C Offset: 25V Span: 0V

Mass spectrum for 2m

¹³C NMR spectrum for compound **2n** (CDCl₃, 100 MHz)

Spectrum Name: DIM-06 Start Ion: 100 End Ion: 2000 Source: ESI + 3.5kV 350C Capillary: 150V 300C Offset: 25V Span: 0V

¹H NMR spectrum for compound **20** (CDCl₃, 400 MHz)

¹³C NMR spectrum for compound **20** (CDCl₃, 100 MHz)

Spectrum Name: DIM-11 Start Ion: 100 End Ion: 2000 Source: ESI + 3.5kV 350C Capillary: 150V 300C Offset: 25V Span: 0V

 13 C NMR spectrum for compound **1b** (DMSO-*d*₆, 100 MHz)

Spectrum Name: DS-06 Start Ion: 100 End Ion: 1200 Source: ESI + 3.5kV 350C Capillary: 150V 300C Offset: 25V Span: 0V

¹H NMR spectrum for compound **3b** (CDCl₃, 400 MHz)

¹³C NMR spectrum for compound **3b** (CDCl₃, 100 MHz)

Spectrum Name: DS-101 Start Ion: 100 End Ion: 1200 Source: ESI + 3.5kV 350C Capillary: 150V 300C Offset: 25V Span: 0V

Mass spectrum for 3b

¹³C NMR spectrum for compound **3c** (CDCl₃, 100 MHz)

Spectrum Name: dim105-1 Start Ion: 100 End Ion: 2000 Source: ESI + 3.5kV 350C Capillary: 150V 300C Offset: 25V Span: 0V

¹H NMR spectrum for compound **4b** (CDCl₃, 400 MHz)

¹³C NMR spectrum for compound **4b** (CDCl₃, 100 MHz)

Spectrum Name: DS-201 Start Ion: 100 End Ion: 1200 Source: ESI + 3.5kV 350C Capillary: 150V 300C Offset: 25V Span: 0V

Mass spectrum for 4b

¹³C NMR spectrum for compound **4c** (CDCl₃, 100 MHz)

Spectrum Name: DS-203 Start Ion: 100 End Ion: 1200 Source: ESI + 3.5kV 350C Capillary: 150V 300C Offset: 25V Span: 0V

NMR spectrum for compound 4d (CDCl₃, 400 MHz)

C NMR spectrum for compound 4d (CDCl₃, 100 MHz)

Spectrum Name: DS-202 Start Ion: 100 End Ion: 1200 Source: ESI + 3.5kV 350C Capillary: 150V 300C Offset: 25V Span: 0V

¹³C NMR spectrum for compound **5a** (CDCl₃, 100 MHz)

Spectrum Name: DIM-113 Start Ion: 100 End Ion: 1200 Source: ESI + 3.5kV 350C Capillary: 150V 300C Offset: 25V Span: 0V

¹H NMR spectrum for compound **5b** (CDCl₃, 400 MHz)

¹³C NMR spectrum for compound **5b** (CDCl₃, 100 MHz)

Mass spectrum for 5b

Spectrum Name: DIM-110 Start Ion: 100 End Ion: 1200 Source: ESI + 3.5kV 350C Capillary: 150V 300C Offset: 25V Span: 0V

¹H NMR spectrum for compound **5d** (CDCl₃, 400 MHz)

Spectrum Name: DIM-109-1 Start Ion: 100 End Ion: 1200 Source: ESI + 3.5kV 350C Capillary: 150V 300C Offset: 25V Span: 0V

¹³C NMR spectrum for compound **5e** (CDCl₃, 100 MHz)

Spectrum Name: dim106 Start Ion: 100 End Ion: 2000 Source: ESI + 3.5kV 350C Capillary: 150V 300C Offset: 25V Span: 0V

Mass spectrum for **5e**

¹H NMR spectrum for compound **6a** (CDCl₃, 400 MHz)

¹³C NMR spectrum for compound **6a** (CDCl₃, 100 MHz)

¹³C NMR spectrum for compound **6b** (CDCl₃, 100 MHz)

Spectrum Name: DIM-403 Start Ion: 100 End Ion: 1200 Source: ESI + 3.5kV 350C Capillary: 150V 300C Offset: 25V Span: 0V

¹H NMR spectrum for compound **6c** (CDCl₃, 400 MHz)

¹³C NMR spectrum for compound **6c** (CDCl₃, 100 MHz)

Spectrum Name: DIM-401 Start Ion: 100 End Ion: 1200 Source: ESI + 3.5kV 350C Capillary: 150V 300C Offset: 25V Span: 0V

¹³C NMR spectrum for compound **7a** (CDCl₃, 100 MHz)

Spectrum Name: CN-01 Start Ion: 100 End Ion: 1200 Source: ESI + 3.5kV 350C Capillary: 150V 300C Offset: 25V Span: 0V

H NMR spectrum for compound 7b (CDCl₃, 400 MHz)

³C NMR spectrum for compound **7b** (CDCl₃, 100 MHz)

Spectrum Name: CN-02 Start Ion: 100 End Ion: 1200 Source: ESI + 3.5kV 350C Capillary: 150V 300C Offset: 25V Span: 0V

Mass spectrum for 7b

Document: 10 May 2021 Batch 5a (VarioELcube) from: --.-- (modified)

INSTALLATION TEST - 25_03_2019

varioELcube serial number: 19181072

Text report

No	Name	Manuscript	C [%]	H [%]	N [%]	S [%]
01	DIM_109	5d	54.40	5.771	21.95	0.719
02	DIM_110	5c	59.89	6.273	24.47	0.442
03	DIM_140	5b	65.02	6.722	26.58	0.332
04	DIM_401	6c	61.78	6.674	22.87	0.219
05	DS_02/06	1b	39.90	4.282	18.30	0.195
06	DS_101	3b	52.85	5.437	21.25	0.122
07	DS_201	4b	54.23	5.904	20.11	0.109
08	DIM_18	2k	55.58	5.398	25.27	0.131
09	DIM_25	21	55.29	5.471	24.77	0.115
10	DIM_27	2m	53.65	4.930	24.33	0.146
11	DIM_106	5e	62.68	6.475	25.56	0.170
13	DIM_403	6b	63.64	6.931	23.50	0.214

Name: eassuperuser, Access: varioELcube superuser

Mon May 10

18:34:43 2021 varioEL cube V4.0.16 (366251fb2)2018-07-25, CHNS Mode, Ser. No.:

19181072

Elementar Analysensysteme GmbH

Document: Untitled (VarioELcube) from: --.-- (modified)

INSTALLATION TEST - 25_03_2019

varioELcube serial number: 19181072

Text report

No	Name	Manuscript	C [%]	H [%]	N [%]	S [%]
		Compound ID				
14	DIM_01	2a	57.98	6.031	26.25	0.441
15	DIM_02	2h	51.50	5.592	23.28	0.126
16	DIM_03	2g	53.49	5.348	24.29	0.089
17-	DIM_04	2i	53.44	5.300	24.06	0.088
18	DIM_06	2n	54.30	5.720	29.70	0.062
19	DIM_10	20	48.80	5.195	24.71	7.731

20	DIM_11	2j	47.83	4.752	21.49	0.125
21	DIM_15	2e	55.82	6.134	22.68	0.052
22	DIM_17	2f	53.88	6.034	21.50	0.041
23	DIM_19	2c	56.85	6.081	24.25	0.026
24	DIM_20	2d	56.57	6.152	24.28	0.020
25	DIM_16	2b	58.31	6.417	25.01	0.015
26	CN_01	7a	59.83	6.184	23.93	0.017
27	CN_02	7b	59.25	6.630	22.84	0.014
28	DIM_113	5a	65.16	7.236	26.76	0.009
29	DIM_404	6а	66.13	7.888	24.51	0.009
30	DS_103	3c	68.09	6.875	19.84	0.013
31	DS_203	4c	67.22	7.209	18.89	0.011
32	DS_202	4d	64.64	7.752	22.64	0.016
33	M_PIP		58.72	9.272	31.73	0.010

Name: eassuperuser Access: varioELcube superuser

Mon Apr 12

07:45:18 2021 varioEL cube V4.0.16 (366251fb2)2018-07-25, CHNS Mode, Ser. No.:

19181072

Elementar Analysensysteme GmbH

Parameter report

Temperatures		
	Pyrol.tube	1170
	CO col.standby	40
	Desorpt.Mid.	40
	Cool temp	60
Time values		

Figure S2. Elemental analysis report