Т

Γ

## Supporting Information

| Figure S1 | Mass spectrum of the [Pd(BAPP)][PdCl <sub>4</sub> ] complex                                                     |
|-----------|-----------------------------------------------------------------------------------------------------------------|
| Figure S2 | IR spectra of the ligand (A) and the complex(B)                                                                 |
| Figure S3 | <sup>1</sup> H NMR spectrum of [Pd(BAPP)][PdCl <sub>4</sub> ] complex                                           |
| Figure S4 | <sup>13</sup> C NMR spectrum of [Pd(BAPP)][PdCl <sub>4</sub> ] complex                                          |
| Figure S5 | UV-absorption spectra of BAPP and [Pd(BAPP)][PdCl <sub>4</sub> ] complex in DMSO.                               |
| Figure S6 | UV-absorption spectra of the concentrated (A) and diluted (B)<br>[Pd(BAPP)][PdCl <sub>4</sub> ] complex in DMSO |
| Figure S7 | UV-absorption spectrum of the [Pd(BAPP)][PdCl <sub>4</sub> ] complex at different time 0, 24 and 48 h in DMSO   |
| Figure S8 | TG and DTG curves of the [Pd(BAPP)][PdCl <sub>4</sub> ] complex                                                 |
| Table S1  | All X-ray diffraction data for [Pd(BAPP)][PdCl <sub>4</sub> ]                                                   |
| Table S2  | Important DFT optimized bond lengths (Å) of BAPP and the Pd(II) complex                                         |
| Table S3  | Antimicrobial activity of the complexes and their corresponding free ligands                                    |
| Table S4  | Some selected pharmacokinetics data calculated for BAPP and                                                     |
|           | [Pd(BAPP)][PdCl <sub>4</sub> ] complex:                                                                         |

cs Scanned with CamScanner



Spectrum

Figure S1 MS spectrum of the [Pd(BAPP)][PdCl4] complex.



Figure S2 (A) IR spectrum of BAPP free ligand.



Figure S2 (B) IR spectrum of [Pd(BAPP)][PdCl<sub>4</sub>] complex.



Figure S3  $^{1}H$  NMR spectrum of [Pd(BAPP)][PdCl<sub>4</sub>] complex



Figure S4 <sup>13</sup>C NMR spectrum of [Pd(BAPP)][PdCl<sub>4</sub>] complex



 $Figure~S5~{
m UV}$ -absorption spectra of the concentrated A and diluted B BAPP free ligand in DMSO.



Figure S6 UV-absorption spectra of the concentrated (A) and diluted (B)  $[Pd(BAPP)][PdCl_4]$  complex in DMSO



Figure S7 UV-absorption spectrum of the  $[Pd(BAPP)][PdCl_4]$  complex at different time 0, 24 and 48 h in DMSO



Figure S8 TG and DTG spectra of the [Pd(BAPP)][PdCl<sub>4</sub>] complex.

|        | Х       | У       | Z       | U(eq) |
|--------|---------|---------|---------|-------|
| Pd(1)  | 5000    | 5000    | 0       | 30(1) |
| Cl(22) | 7437(1) | 2825(1) | 58(1)   | 44(1) |
| Cl(23) | 6212(1) | 6121(1) | 955(1)  | 42(1) |
| Pd(2)  | 3333(1) | 2966(1) | 2557(1) | 29(1) |
| N(8)   | 1086(4) | 4444(4) | 3029(2) | 35(1) |
| N(9)   | 1531(4) | 2363(4) | 2014(2) | 33(1) |
| N(13)  | 4858(4) | 3948(5) | 3056(2) | 44(1) |
| N(14)  | 5411(4) | 1240(4) | 2092(2) | 42(1) |
| C(10)  | 1056(6) | 5631(6) | 3641(3) | 50(1) |
| C(11)  | 2391(7) | 6379(6) | 3271(3) | 59(1) |
| C(12)  | 4111(6) | 5285(6) | 3625(3) | 58(1) |
| C(15)  | 2031(6) | 1070(6) | 1406(3) | 52(1) |
| C(16)  | 3629(6) | -253(6) | 1784(4) | 54(1) |
| C(17)  | 5179(6) | 184(6)  | 1463(3) | 55(1) |
| C(18)  | 280(5)  | 3253(6) | 3645(3) | 43(1) |
| C(19)  | 481(5)  | 2016(6) | 2987(3) | 43(1) |
| C(20)  | 563(5)  | 3936(5) | 1353(3) | 40(1) |
| C(21)  | 189(5)  | 5221(5) | 2009(3) | 43(1) |
| Pd(3)  | 5000    | 0       | 5000    | 39(1) |
| Cl(24) | 7232(1) | 931(2)  | 4745(1) | 61(1) |
| Cl(25) | 3477(2) | 2030(2) | 5866(1) | 60(1) |

Table S1. X-ray diffraction data for [Pd(BAPP)][PdCl<sub>4</sub>]

a) Atomic coordinates (x  $10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup>x  $10^3$ )

for [Pd(BAPP)][PdCl4]. U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

b) Selected bond lengths [Å] and angles [°] for  $[Pd(BAPP)][PdCl_4].$ 

| Pd(1)-Cl(23) | 2.3008(11) |
|--------------|------------|
| Pd(1)-Cl(22) | 2.3128(11) |
| Pd(2)-N(8)   | 2.047(3)   |
| Pd(2)-N(13)  | 2.054(3)   |
| Pd(2)-N(9)   | 2.054(3)   |
| Pd(2)-N(14)  | 2.058(3)   |
|              |            |

c) Bond lengths [Å] and angles [°] for  $[Pd(BAPP)][PdCl_4]$ .

| Pd(1)-Cl(23)#1 | 2.3008(11) | C(11)-H(11B) | 0.97     |
|----------------|------------|--------------|----------|
| Pd(1)-Cl(23)   | 2.3008(11) | C(12)-H(12A) | 0.97     |
| Pd(1)-Cl(22)#1 | 2.3128(11) | C(12)-H(12B) | 0.97     |
| Pd(1)-Cl(22)   | 2.3128(11) | C(15)-C(16)  | 1.511(6) |
| Pd(2)-N(8)     | 2.047(3)   | C(15)-H(15A) | 0.97     |
| Pd(2)-N(13)    | 2.054(3)   | C(15)-H(15B) | 0.97     |
| Pd(2)-N(9)     | 2.054(3)   | C(16)-C(17)  | 1.502(6) |
|                |            |              |          |

| Pd(2)-N(14)           | 2.058(3)   | C(16)-H(16A)        | 0.97       |
|-----------------------|------------|---------------------|------------|
| N(8)-C(10)            | 1.476(5)   | C(16)-H(16B)        | 0.97       |
| N(8)-C(21)            | 1.498(4)   | C(17)-H(17A)        | 0.97       |
| N(8)-C(18)            | 1.502(5)   | C(17)-H(17B)        | 0.97       |
| N(9)-C(15)            | 1.481(5)   | C(18)-C(19)         | 1.519(6)   |
| N(9)-C(20)            | 1.486(5)   | C(18)-H(18A)        | 0.97       |
| N(9)-C(19)            | 1.494(4)   | C(18)-H(18B)        | 0.97       |
| N(13)-C(12)           | 1.483(6)   | C(19)-H(19A)        | 0.97       |
| N(13)-H(13A)          | 0.89       | C(19)-H(19B)        | 0.97       |
| N(13)-H(13B)          | 0.89       | C(20)-C(21)         | 1.528(6)   |
| N(14)-C(17)           | 1.473(6)   | C(20)-H(20A)        | 0.97       |
| N(14)-H(14A)          | 0.89       | C(20)-H(20B)        | 0.97       |
| N(14)-H(14B)          | 0.89       | C(21)-H(21A)        | 0.97       |
| C(10)-C(11)           | 1.502(6)   | C(21)-H(21B)        | 0.97       |
| C(10)-H(10A)          | 0.97       | Pd(3)-Cl(25)#2      | 2.3066(13) |
| C(10)-H(10B)          | 0.97       | Pd(3)-Cl(25)        | 2.3066(13) |
| C(11)-C(12)           | 1.512(7)   | Pd(3)-Cl(24)#2      | 2.3102(12) |
| C(11)-H(11A)          | 0.97       | Pd(3)-Cl(24)        | 2.3102(12) |
| Cl(23)#1-Pd(1)-Cl(23) | 180.00(5)  | N(13)-C(12)-H(12B)  | 108.8      |
| Cl(22)#1              | 89.73(4)   | C(11)-C(12)-H(12B)  | 108.8      |
| Cl(23)-Pd(1)-Cl(22)#1 | 90.27(4)   | H(12A)-C(12)-H(12B) | 107.6      |
| Cl(23)#1-Pd(1)-Cl(22) | 90.27(4)   | N(9)-C(15)-C(16)    | 112.5(3)   |
| Cl(23)-Pd(1)-Cl(22)   | 89.73(4)   | N(9)-C(15)-H(15A)   | 109.1      |
| Cl(22)#1-Pd(1)-Cl(22) | 180        | C(16)-C(15)-H(15A)  | 109.1      |
| N(8)-Pd(2)-N(13)      | 98.61(14)  | N(9)-C(15)-H(15B)   | 109.1      |
| N(8)-Pd(2)-N(9)       | 73.44(13)  | C(16)-C(15)-H(15B)  | 109.1      |
| N(13)-Pd(2)-N(9)      | 170.55(14) | H(15A)-C(15)-H(15B) | 107.8      |
| N(8)-Pd(2)-N(14)      | 171.44(14) | C(17)-C(16)-C(15)   | 114.8(4)   |
| N(13)-Pd(2)-N(14)     | 89.30(14)  | C(17)-C(16)-H(16A)  | 108.6      |
| N(9)-Pd(2)-N(14)      | 98.96(14)  | C(15)-C(16)-H(16A)  | 108.6      |
| C(10)-N(8)-C(21)      | 112.3(3)   | C(17)-C(16)-H(16B)  | 108.6      |
| C(10)-N(8)-C(18)      | 112.1(3)   | C(15)-C(16)-H(16B)  | 108.6      |
| C(21)-N(8)-C(18)      | 106.7(3)   | H(16A)-C(16)-H(16B) | 107.6      |
| C(10)-N(8)-Pd(2)      | 119.1(3)   | N(14)-C(17)-C(16)   | 113.5(3)   |
| C(21)-N(8)-Pd(2)      | 103.4(2)   | N(14)-C(17)-H(17A)  | 108.9      |
| C(18)-N(8)-Pd(2)      | 102.0(2)   | C(16)-C(17)-H(17A)  | 108.9      |
| C(15)-N(9)-C(20)      | 111.4(3)   | N(14)-C(17)-H(17B)  | 108.9      |
| C(15)-N(9)-C(19)      | 112.0(3)   | С(16)-С(17)-Н(17В)  | 108.9      |
| C(20)-N(9)-C(19)      | 107.6(3)   | H(17A)-C(17)-H(17B) | 107.7      |
| C(15)-N(9)-Pd(2)      | 119.5(3)   | N(8)-C(18)-C(19)    | 108.3(3)   |
| C(20)-N(9)-Pd(2)      | 101.0(2)   | N(8)-C(18)-H(18A)   | 110        |

| C(19)-N(9)-Pd(2)    | 104.2(2) | C(19)-C(18)-H(18A)          | 110       |
|---------------------|----------|-----------------------------|-----------|
| C(12)-N(13)-Pd(2)   | 119.2(3) | N(8)-C(18)-H(18B)           | 110       |
| C(12)-N(13)-H(13A)  | 107.5    | C(19)-C(18)-H(18B)          | 110       |
| Pd(2)-N(13)-H(13A)  | 107.5    | H(18A)-C(18)-H(18B)         | 108.4     |
| C(12)-N(13)-H(13B)  | 107.5    | N(9)-C(19)-C(18)            | 107.8(3)  |
| Pd(2)-N(13)-H(13B)  | 107.5    | N(9)-C(19)-H(19A)           | 110.1     |
| H(13A)-N(13)-H(13B) | 107      | C(18)-C(19)-H(19A)          | 110.1     |
| C(17)-N(14)-Pd(2)   | 118.3(3) | N(9)-C(19)-H(19B)           | 110.1     |
| C(17)-N(14)-H(14A)  | 107.7    | C(18)-C(19)-H(19B)          | 110.1     |
| Pd(2)-N(14)-H(14A)  | 107.7    | H(19A)-C(19)-H(19B)         | 108.5     |
| C(17)-N(14)-H(14B)  | 107.7    | N(9)-C(20)-C(21)            | 108.2(3)  |
| Pd(2)-N(14)-H(14B)  | 107.7    | N(9)-C(20)-H(20A)           | 110.1     |
| H(14A)-N(14)-H(14B) | 107.1    | C(21)-C(20)-H(20A)          | 110.1     |
| N(8)-C(10)-C(11)    | 112.9(3) | N(9)-C(20)-H(20B)           | 110.1     |
| N(8)-C(10)-H(10A)   | 109      | C(21)-C(20)-H(20B)          | 110.1     |
| С(11)-С(10)-Н(10А)  | 109      | H(20A)-C(20)-H(20B)         | 108.4     |
| N(8)-C(10)-H(10B)   | 109      | N(8)-C(21)-C(20)            | 107.7(3)  |
| C(11)-C(10)-H(10B)  | 109      | N(8)-C(21)-H(21A)           | 110.2     |
| H(10A)-C(10)-H(10B) | 107.8    | C(20)-C(21)-H(21A)          | 110.2     |
| C(10)-C(11)-C(12)   | 113.7(4) | N(8)-C(21)-H(21B)           | 110.2     |
| C(10)-C(11)-H(11A)  | 108.8    | C(20)-C(21)-H(21B)          | 110.2     |
| C(12)-C(11)-H(11A)  | 108.8    | H(21A)-C(21)-H(21B)         | 108.5     |
| C(10)-C(11)-H(11B)  | 108.8    | Cl(25)#2-Pd(3)-Cl(25)       | 180.00(5) |
| C(12)-C(11)-H(11B)  | 108.8    | C1(23)#2-Pd(3)-<br>C1(24)#2 | 90.77(5)  |
| H(11A)-C(11)-H(11B) | 107.7    | C1(25)-Pd(3)-C1(24)#2       | 89 23(5)  |
| N(13)-C(12)-C(11)   | 114.0(4) | C1(25)#2-Pd(3)-C1(24)       | 89.23(5)  |
| N(13)-C(12)-H(12A)  | 108.8    | C1(25)-Pd(3)-C1(24)         | 90.77(5)  |
| С(11)-С(12)-Н(12А)  | 108.8    | Cl(24)#2-Pd(3)-Cl(24)       | 180       |

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z #2 -x+1,-y,-z+1

d) Anisotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for [Pd(BAPP)][PdCl<sub>4</sub>]. The anisotropic displacement factor exponent takes the form:  $-2p^2[h^2 a^{*2}U^{11} + ... + 2hka^* b^* U^{12}]$ 

|        | U <sup>11</sup> | U <sup>22</sup> | U <sup>33</sup> | U <sup>23</sup> | U <sup>13</sup> | U <sup>12</sup> |
|--------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Pd(1)  | 29(1)           | 31(1)           | 29(1)           | -6(1)           | 0(1)            | -11(1)          |
| Cl(22) | 34(1)           | 40(1)           | 56(1)           | -11(1)          | -1(1)           | -8(1)           |
| Cl(23) | 40(1)           | 45(1)           | 46(1)           | -16(1)          | -5(1)           | -16(1)          |
| Pd(2)  | 28(1)           | 33(1)           | 26(1)           | -5(1)           | -3(1)           | -12(1)          |
| N(8)   | 33(2)           | 36(2)           | 33(2)           | -8(1)           | 0(1)            | -10(2)          |
| N(9)   | 33(2)           | 37(2)           | 31(2)           | -8(1)           | -6(1)           | -13(2)          |
| N(13)  | 46(2)           | 52(3)           | 38(2)           | 2(2)            | -12(2)          | -28(2)          |
| N(14)  | 40(2)           | 44(2)           | 35(2)           | -1(2)           | 0(1)            | -10(2)          |
| C(10)  | 62(3)           | 45(3)           | 45(2)           | -21(2)          | 3(2)            | -15(3)          |
| C(11)  | 90(4)           | 45(3)           | 51(3)           | -20(2)          | 3(2)            | -31(3)          |

| C(12)  | 85(4) | 69(4) | 41(2) | -14(2) | -7(2)  | -49(3) |
|--------|-------|-------|-------|--------|--------|--------|
| C(15)  | 63(3) | 55(4) | 50(3) | -24(2) | -6(2)  | -26(3) |
| C(16)  | 72(3) | 35(3) | 62(3) | -20(2) | 10(2)  | -25(3) |
| C(17)  | 61(3) | 42(3) | 57(3) | -18(2) | 8(2)   | -11(3) |
| C(18)  | 37(2) | 57(3) | 37(2) | -9(2)  | 8(2)   | -21(2) |
| C(19)  | 41(3) | 53(3) | 41(2) | -5(2)  | 4(2)   | -28(2) |
| C(20)  | 32(2) | 51(3) | 33(2) | -4(2)  | -8(2)  | -10(2) |
| C(21)  | 34(2) | 46(3) | 42(2) | 0(2)   | -6(2)  | -8(2)  |
| Pd(3)  | 37(1) | 44(1) | 32(1) | 3(1)   | -7(1)  | -16(1) |
| Cl(24) | 47(1) | 68(1) | 65(1) | 12(1)  | -14(1) | -31(1) |
| Cl(25) | 62(1) | 55(1) | 55(1) | -10(1) | -5(1)  | -9(1)  |

e) Hydrogen coordinates (x 10<sup>4</sup>) and isotropic displacement parameters (Å<sup>2</sup>x 10 <sup>3</sup>) for [Pd(BAPP)][PdCl<sub>4</sub>].

|        | Х     | У     | Z    | U(eq) |
|--------|-------|-------|------|-------|
| H(13A) | 5596  | 3156  | 3481 | 52    |
| H(13B) | 5425  | 4296  | 2484 | 52    |
| H(14A) | 6090  | 1738  | 1715 | 51    |
| H(14B) | 5935  | 616   | 2678 | 51    |
| H(10A) | 1196  | 5105  | 4389 | 60    |
| H(10B) | -23   | 6473  | 3579 | 60    |
| H(11A) | 2108  | 7352  | 3541 | 71    |
| H(11B) | 2412  | 6683  | 2498 | 71    |
| H(12A) | 4840  | 5923  | 3517 | 69    |
| H(12B) | 4047  | 4833  | 4384 | 69    |
| H(15A) | 2173  | 1530  | 657  | 62    |
| H(15B) | 1147  | 612   | 1477 | 62    |
| H(16A) | 3555  | -563  | 2556 | 65    |
| H(16B) | 3729  | -1183 | 1504 | 65    |
| H(17A) | 6137  | -795  | 1542 | 66    |
| H(17B) | 5134  | 719   | 716  | 66    |
| H(18A) | -893  | 3801  | 3784 | 52    |
| H(18B) | 804   | 2727  | 4323 | 52    |
| H(19A) | 1012  | 940   | 3398 | 52    |
| H(19B) | -601  | 2084  | 2786 | 52    |
| H(20A) | -468  | 3883  | 1154 | 48    |
| H(20B) | 1201  | 4198  | 707  | 48    |
| H(21A) | 567   | 6097  | 1618 | 52    |
| H(21B) | -1001 | 5653  | 2157 | 52    |

f) Torsion angles [°] for [Pd(BAPP)][PdCl4].

| C(21)-N(8)-C(10)-C(11)  | -83.1(4) |
|-------------------------|----------|
| C(18)-N(8)-C(10)-C(11)  | 156.8(4) |
| Pd(2)-N(8)-C(10)-C(11)  | 37.9(5)  |
| N(8)-C(10)-C(11)-C(12)  | -75.7(5) |
| Pd(2)-N(13)-C(12)-C(11) | -32.4(5) |
|                         |          |

| C(10)-C(11)-C(12)-N(13) | 72.7(5)   |
|-------------------------|-----------|
| C(20)-N(9)-C(15)-C(16)  | 151.3(4)  |
| C(19)-N(9)-C(15)-C(16)  | -88.2(4)  |
| Pd(2)-N(9)-C(15)-C(16)  | 34.1(5)   |
| N(9)-C(15)-C(16)-C(17)  | -73.8(5)  |
| Pd(2)-N(14)-C(17)-C(16) | -36.2(5)  |
| C(15)-C(16)-C(17)-N(14) | 75.7(5)   |
| C(10)-N(8)-C(18)-C(19)  | -175.9(3) |
| C(21)-N(8)-C(18)-C(19)  | 60.7(4)   |
| Pd(2)-N(8)-C(18)-C(19)  | -47.4(3)  |
| C(15)-N(9)-C(19)-C(18)  | 170.7(3)  |
| C(20)-N(9)-C(19)-C(18)  | -66.6(4)  |
| Pd(2)-N(9)-C(19)-C(18)  | 40.1(4)   |
| N(8)-C(18)-C(19)-N(9)   | 4.7(4)    |
| C(15)-N(9)-C(20)-C(21)  | -176.5(3) |
| C(19)-N(9)-C(20)-C(21)  | 60.4(4)   |
| Pd(2)-N(9)-C(20)-C(21)  | -48.6(3)  |
| C(10)-N(8)-C(21)-C(20)  | 169.9(3)  |
| C(18)-N(8)-C(21)-C(20)  | -66.8(4)  |
| Pd(2)-N(8)-C(21)-C(20)  | 40.2(3)   |
| N(9)-C(20)-C(21)-N(8)   | 5.7(4)    |

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z #2 -x+1,-y,-z+1

| D-HA                 | d(D-H) | d(HA) | d(DA)    | <(DHA) |
|----------------------|--------|-------|----------|--------|
| N(13)-H(13A)Cl(24)   | 0.89   | 2.39  | 3.268(3) | 171.6  |
| N(13)-H(13B)Cl(23)   | 0.89   | 2.45  | 3.300(3) | 160.2  |
| N(14)-H(14A)Cl(22)   | 0.89   | 2.47  | 3.294(3) | 154.6  |
| N(14)-H(14B)Cl(25)#2 | 0.89   | 2.60  | 3.395(3) | 149.0  |
| C(10)-H(10B)Cl(25)#3 | 0.97   | 2.88  | 3.783(5) | 155.8  |
| C(12)-H(12B)Cl(25)   | 0.97   | 2.95  | 3.747(5) | 140.5  |
| C(16)-H(16B)Cl(23)#4 | 0.97   | 2.80  | 3.596(5) | 139.4  |
| C(19)-H(19A)Cl(24)#2 | 0.97   | 2.83  | 3.676(4) | 146.1  |
| C(20)-H(20A)Cl(22)#5 | 0.97   | 2.94  | 3.846(4) | 156.2  |
| C(20)-H(20A)Cl(23)#5 | 0.97   | 2.86  | 3.592(4) | 133.1  |
| C(20)-H(20B)Cl(23)#1 | 0.97   | 2.89  | 3.816(4) | 160.7  |
| C(21)-H(21A)Cl(22)#1 | 0.97   | 2.80  | 3.658(4) | 147.6  |
| C(21)-H(21B)Cl(23)#5 | 0.97   | 2.86  | 3.573(4) | 131.4  |

g) Hydrogen bonds for  $[Pd(BAPP)][PdCl_4]$  [Å and °].

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z #2 -x+1,-y,-z+1 #3 -x,-y+1,-z+1 #4 x,y-1,z #5 x-1,y,z

| Type of bond | Bond length (Å) |                |  |
|--------------|-----------------|----------------|--|
|              | BAPP            | Pd(II) complex |  |
| N1N2         | 2.885           | 2.500          |  |
| N1 N3        | 4.390           | 3.215          |  |
| N2 N4        | 4.459           | 3.049          |  |
| N3 N4        | 11.413          | 3.085          |  |

Table S2. Important DFT optimized bond lengths (Å) of BAPP and the Pd(II) complex

Table S3 Antimicrobial activity of the complex and the free ligand

|                         | Microbial species |            |                |              |              |                |
|-------------------------|-------------------|------------|----------------|--------------|--------------|----------------|
| Compounds               | Bacteria          |            |                |              | Fungus       |                |
|                         | P. aeruginosa     | E.<br>coli | B.<br>subtilis | S.<br>aureus | A.<br>flavus | C.<br>albicans |
| BAPP                    | 21                | 20         | 20             | 21           | 16           | 13             |
| Pd(BAPP)<br>complex     | 12                | 14         | 12             | 13           | 13           | 20             |
| Control (DMSO)          | 0                 | 0          | 0              | 0            | 0            | 0              |
| Standard<br>Ampicilline | 17                | 22         | 20             | 18           | -            | -              |
| Amphotericin B          | -                 | -          | -              | -            | 17           | 19             |

Table S4 Some selected pharmacokinetics data calculated for BAPP and

[Pd(BAPP)][PdCl<sub>4</sub>] complex:

| ADME FACTOR <sup>a</sup>   | BAPP                                        | complex      |  |  |  |  |
|----------------------------|---------------------------------------------|--------------|--|--|--|--|
| Physicochemical Properties |                                             |              |  |  |  |  |
| Formula                    | $C_{10}H_{24}N_4$ $C_{10}H_{24}Cl_4N_4Pd_2$ |              |  |  |  |  |
| Molecular weight           | 200.32 g/mol                                | 554.98 g/mol |  |  |  |  |
| Num. heavy atoms           | 14                                          | 20           |  |  |  |  |
| Fraction Csp3              | 1.00                                        | 1.00         |  |  |  |  |
| Molar Refractivity         | 67.11                                       | 98.35        |  |  |  |  |
| TPSA                       | 58.52 Ų                                     | 58.52 Ų      |  |  |  |  |
|                            | Lipophilicity                               |              |  |  |  |  |

| $\text{Log } P_{\text{o/w}} (\text{iLOGP})$  | 2.23                | 0.00               |  |
|----------------------------------------------|---------------------|--------------------|--|
| $\text{Log } P_{\text{o/w}} (\text{XLOGP3})$ | -1.43               | 3.10               |  |
| $\text{Log } P_{\text{o/w}} \text{ (WLOGP)}$ | -1.46               | 0.54               |  |
| $\text{Log } P_{\text{o/w}} (\text{MLOGP})$  | -0.21               | 0.90               |  |
| $\log P_{o/w}$ (SILICOS-IT)                  | -0.01               | -2.46              |  |
| Consensus Log $P_{o/w}$                      | -0.18               | 0.42               |  |
|                                              | Water Solubility    |                    |  |
| Log S (ESOL)                                 | 0.21                | -5.23              |  |
| Class                                        | Highly soluble      | Moderately soluble |  |
| Log S (Ali)                                  | 0.70                | -4.00              |  |
| Class                                        | Highly soluble      | Soluble            |  |
| Log S (SILICOS-IT)                           | -1.38               | -3.22              |  |
| Class                                        | Soluble             | Soluble            |  |
|                                              | Pharmacokinetics    |                    |  |
| GI absorption                                | High                | High               |  |
| BBB permeant                                 | No                  | No                 |  |
| P-gp substrate                               | Yes                 | Yes                |  |
| CYP1A2 inhibitor                             | No                  | No                 |  |
| CYP2C19 inhibitor                            | No                  | No                 |  |
| CYP2C9 inhibitor                             | No                  | No                 |  |
| CYP2D6 inhibitor                             | No                  | No                 |  |
| CYP3A4 inhibitor                             | No                  | No                 |  |
| $\log K_{\rm p}$ (skin                       | <b>8 54 am/s</b>    | 7.19 am/a          |  |
| permeation)                                  | -0.34 CIII/S        | -/.40 CIII/S       |  |
|                                              | Medicinal Chemistry | /                  |  |
| PAINS                                        | 0 alert             | 0 alert            |  |
| Brenk                                        | 0 alert             | 0 alert            |  |
| Synthetic accessibility                      | 1.88                | 5.18               |  |

(TPSA: Topological Polar Surface Area), Consensus  $LogP_{o/w}$ : Average of all five predictions, GI absorption: Gastrointestinal absorption, P-gp substrate: P-glycoprotein substrate, CYP1A2 inhibitor: Cytochrome P450 1A2 inhibitor, CYP2C19 inhibitor: Cytochrome P450 2C19

inhibitor, CYP2C9 inhibitor: Cytochrome P450 2C9 inhibitor), CYP2D6 inhibitor: Cytochrome P450 2D6 inhibitor, CYP3A4 inhibitor: Cytochrome P450 3A4 inhibitor, PAINS: Pan Assay Interference Structures, Brenk: Structural Alert, Synthetic accessibility score: from 1 (very easy) to 10 (very difficult).