Electronic Supplementary Information

Metal-Support Interaction Induced ZnO Overlayer in Cu@ZnO/Al₂O₃ Catalysts toward Low-Temperature Water Gas Shift Reaction

Zhiyuan Li,¹* Na Li,¹ Nan Wang,¹ Bing Zhou,¹ Jun Yu,² Boyu Song,² Pan Yin,² Yusen Yang²

¹ Stated Grid Integrated Energy Service Group Co., LTD, Beijing 100052, P. R. China

² State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China

* Corresponding author. Tel: +86-10-63505060; Fax: +86-10-63505555.

E-mail address: <u>sailorlzy@163.com</u> (Zhiyuan Li).

Figure S1. (A–B) TEM images of Cu₂Zn₁Al-LDHs.

Figure S2. SEM image of Cu_2Zn_1Al -LDHs and the corresponding element EDS mapping of Cu, Zn, Al, and O.

Figure S3. TEM images of Cu@ZnO/Al₂O₃-300R.

Figure S4. SEM image of Cu@ZnO/Al₂O₃-300R and the corresponding element EDS mapping of Cu, Zn, Al, and O.

Figure S5. SEM image of $Cu@ZnO/Al_2O_3$ -350R and the corresponding element EDS mapping of Cu, Zn, Al, and O.

Figure S6. SEM image of Cu@ZnO/Al₂O₃-400R and the corresponding element EDS mapping of Cu, Zn, Al, and O.

Figure S7. (A) CO conversion as a function of reaction temperature over the Cu@ZnO/Al₂O₃ catalysts (WGS reaction conditions: 6% CO, 25% H₂O, 69% Ar; WHSV: 15700 mL g_{cat}^{-1} h⁻¹). (B) Reaction rates of Cu@ZnO/Al₂O₃-300R, Cu@ZnO/Al₂O₃-250R and Cu@ZnO/Al₂O₃-200R catalysts at 175 °C.

Figure S8. Arrhenius plots of WGS reaction over the commercial Cu/ZnO/Al₂O₃ catalyst. (WGS reaction conditions: 6% CO, 25% H₂O, 69% Ar)

Figure S9. CO conversion as a function of reaction temperature over the Cu@ZnO/Al₂O₃-300R catalyst (WGS reaction conditions: 6% CO, 25% H₂O, 69% Ar; WHSV: 15700 mL g_{cat}^{-1} h⁻¹).

Figure S10. (A) XRD patterns of the Cu@ZnO/Al₂O₃-300R catalyst: (a) the fresh catalyst (b) the used catalyst after five cycles test. (B) TEM images of the used Cu@ZnO/Al₂O₃-300R catalyst after five cycles test.

Figure S11. (A) XAES spectra of Cu LMM for Cu@ZnO/Al₂O₃-300R, Cu@ZnO/Al₂O₃-350R, and Cu@ZnO/Al₂O₃-400R. (B) Reaction rate as a function of surface Cu⁺ concentration.

test

catalysts	Cu species content ^a (wt %)	Zn species content ^a (wt %)	Al species content ^a (wt %)	Cu crystallite size ^b (nm)	mean Cu particle size ^c (nm)
Cu@ZnO/Al ₂ O ₃ -300R (fresh)	27.5	13.9	47.1	7.6	5.4
Cu@ZnO/Al ₂ O ₃ -300R (used)	27.1	13.6	47.0	7.9	5.6

^{*a*} Element content was determined by inductively coupled plasma–atomic emission spectroscopy (ICP–AES). ^{*b*} Crystallite size of Cu was determined by XRD with the Scherrer equation. ^{*c*}Mean particle size of Cu was determined by TEM.

catalysts	Cu species content ^a (wt %)	Zn species content ^a (wt %)	Al species content ^a (wt %)	Cu crystallite size ^b (nm)	mean Cu particle size ^c (nm)
Cu@ZnO/Al ₂ O ₃ -300R (fresh)	27.5	13.9	47.1	7.6	5.4
Cu@ZnO/Al ₂ O ₃ -300R (used)	27.7	14.3	47.4	8.0	5.8

Table S2. Physicochemical properties of Cu@ZnO/Al₂O₃-300R catalyst before and after stability test

^{*a*}Element content was determined by inductively coupled plasma–atomic emission spectroscopy (ICP–AES). ^{*b*} Crystallite size of Cu was determined by XRD with the Scherrer equation. ^{*c*}Mean particle size of Cu was determined by TEM.

Catalyst	Reaction Temperatu re (°C)	Reaction Condition	Reaction Rate (µmol _{CO} g _{cat} ⁻¹ s ⁻¹)	Ref.
Cu@ZnO/Al ₂ O ₃ -300R	175	6%CO-25%H ₂ O-Ar	19.47	This work
Cu@ZnO/Al2O3-350R	175	6%CO-25%H ₂ O-Ar	12.83	This work
Cu@ZnO/Al2O3-400R	175	6%CO-25%H ₂ O-Ar	10.31	This work
Cu/ZnO/Al ₂ O ₃	175	6%CO-25%H ₂ O-Ar	3.58	This work
Cu _{8.9} /CeO ₂	300	10% CO, $20%$ H ₂ O, balance He	16.7	Catal. Today 2008, 137, 29
Cu/CeO ₂	200	1.0 vol.% CO, 3.0 vol.% H ₂ O/He	4.0	Nat. Catal. 2019, 2, 334
ZnO/c-Cu	225	5% CO, 10% H_2O, balance Ar	1.2	Nat. Commun. 2017, 8, 488
Cu/ZnO/La	230	7% CO, 8.5% CO ₂ , 23% H ₂ O,	11.7	J. Catal. 2010, 273, 73
		$37.5\%~H_2$ and $25\%~N_2$		
$Ce_{0.75}Cu_{0.1}Ni_{0.15}O_{2-\delta}$	240	1.3% CO, 35% H ₂ O	2.2	Appl. Catal. B: Environ. 2012 , 123, 367
Cu ₄ Ni ₁₆ /CeLaO _x	275	10% CO, 20% $\rm H_2O,$ balance He	15.6	Appl. Catal., A 2010, 387, 87
Au@TiO _{2-x} /ZnO(H300)	250	6%CO-25%H2O-Ar	15.2	ACS Catal. 2019, 9, 2707
Au/CeO ₂	150	2%CO-10%H ₂ O-He	2.38	Angew. Chem. Int. Ed. 2008 , 47, 2884
Au/CeFeAl	180	4.5%CO-30%H ₂ O-N ₂	1.98	J. Catal. 2014, 314, 1

Table S3. Comparison of catalytic performances for WGSR over various catalysts