Supporting Information (SI)

Development of dual-functional catalysis for hydrazine oxidation by organic p-n bilayer through in-situ formation of silver co-catalyst

Mamoru Sato, and Toshiyuki Abe*

Calculation procedures

The faradaic efficiency (F.E.) was calculated as follows:

i) During the electrolysis reaction, the amount of charge passed was measured using a coulomb meter.
The theoretical amount of formed N₂ (or H₂) was calculated from the obtained charge amount.
ii) After conducting the electrolysis reaction, both N₂ and H₂ were quantified by gas chromatography.

Concretely, the *F.E.* value for the formation of N_2 (or H_2) was estimated according to the following equation:

F.E. (%) = [amount of N₂ (or H₂) evolved]/[theoretical amount of N₂ (or H₂)] × 100 = [amount of N₂ (or H₂) evolved]/[(amount of charge passed)/(*nF*)] × 100

where *n* is the number of electrons participating in the evolution of the products (n = 4 and 2 for the formation of N₂ and H₂, respectively) and *F* represents the Faraday's constant (9.65 × 10⁴ C mol⁻¹).

The incident photon-to-current conversion efficiency (*IPCE*) was estimated according to the following equation:

$$IPCE (\%) = ([I/e]/[W/\varepsilon]) \times 100$$

where I (A cm⁻²) is the photocurrent density, e (C) denotes the elementary electric charge, W (W cm⁻²) is the light intensity, and ε is the photon energy of monochromatic light.

Scheme S1 Mechanism of the dual-functional catalysis for thiol (RS⁻) oxidation occurring at PTCBI/CoPc-Nf in the dark and under illumination.

Scheme S2Illustration of the photoelectrochemical cell employed for measuring bothvoltammogramsandphotocurrentsunderpotentiostaticconditions.

Fig. S1 XRD pattern of PTCBI/CoPc-Nf[Ag₂O] measured after Ar purge of the N_2H_4 solution for 30 min. As for the closed circles, those are consistent with Fig. 2(a).

Fig. S2 TEM images of Ag₂O dispersed in a Nf membrane. A 4×10^{-5} dm³ portion of the suspension, composed of Nf and Ag₂O (see main text), was cast onto a collodion membrane supported on a copper grid mesh and dried at room temperature.

(a), Ag₂O sample after drying; (b), the sample exposed to a N₂H₄ solution under Ar purge (i.e., Ag).

Fig. S3 SEM images of $PTCBI/CoPc-Nf[Ag_2O]$.

(a), the sample exposed to a N_2H_4 solution under Ar purge (i.e., Ag); (b), the sample after the photoelectrolysis.