Supplementary Information

Synthesis of 7-amino-6-halogeno-3-phenylquinoxaline-2-carbonitrile 1,4-dioxides: A way forward for targeting hypoxia and drug resistance of cancer cells

Galina I. Buravchenko ${ }^{\text {a,b}}$, Alexander M. Scherbakov ${ }^{\text {c }}$, Lyubov G. Dezhenkova ${ }^{\text {a }}$, Lianet Monzote ${ }^{\text {d }}$, Andrey E. Shchekotikhin ${ }^{\text {a,* }}$${ }^{\text {a }}$ Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia${ }^{\mathrm{b}}$ Mendeleyev University of Chemical Technology, 9 Miusskaya Square, Moscow 125190, Russia${ }^{\text {c }}$ Blokhin National Medical Research Center of Oncology, 24 Kashirskoye sh., Moscow 115522, Russia${ }^{d}$ Department of Parasitology, Pedro Kouri Tropical Medicine Institute, Havana, Cuba* Corresponding author:Andrey E. Shchekotikhin e-mail: shchekotikhin@mail.ru
Legends to Figures and Tables
Figure S1-S65, Table S1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of new compounds. S2
Figure S71-S104. Copies of HRMS ESI spectra. S38
Figure S105-S116. Copies of HPLC analysis. S72
Table S2. Experimental parameters of aqueous solubility ($\mathrm{pH}=7$) of some derivatives 4a-c, 13a and 14a at $23^{\circ} \mathrm{C}$. S84

Copies of NMR Spectra

Figure S1. Copy of ${ }^{1} \mathrm{H}$ NMR spectrum of the derivative 6.

Figure S2. Copy of ${ }^{13} \mathrm{C}$ NMR spectrum of the derivative $\mathbf{6}$.

Figure S3. Copy of ${ }^{1} \mathrm{H}$ NMR spectrum of the derivative 7.

Figure S4. Copy of ${ }^{13} \mathrm{C}$ NMR spectrum of the derivative 7.

Figure S5. Copy of ${ }^{1} \mathrm{H}$ NMR spectrum of the derivative 9 a.

Figure S6. Copy of ${ }^{13} \mathrm{C}$ NMR spectrum of the derivative 9 a.

Figure $\mathbf{S 7}$. Copy of ${ }^{1} \mathrm{H}$ NMR spectrum of the derivative $\mathbf{9 b}$.

Figure S8. Copy of ${ }^{13} \mathrm{C}$ NMR spectrum of the derivative $\mathbf{9 b}$.

Figure S9. Copy of ${ }^{1} \mathrm{H}$ NMR spectrum of the derivative $9 \mathbf{c}$.

Figure S10. Copy of ${ }^{13} \mathrm{C}$ NMR spectrum of the derivative 9 c .

Figure S11. Copy of ${ }^{1} \mathrm{H}$ NMR spectrum of the derivative 9 d .

Figure S12. Copy of ${ }^{13} \mathrm{C}$ NMR spectrum of the derivative 9 d .

Figure S13. Copy of ${ }^{1} \mathrm{H}$ NMR spectrum of the derivative $9 \mathbf{e}$.

Figure S14. Copy of ${ }^{13} \mathrm{C}$ NMR spectrum of the derivative 9 e

Figure S15. Copy of ${ }^{1} \mathrm{H}$ NMR spectrum of the derivative $9 \mathbf{f}$

Figure S16. Copy of ${ }^{13} \mathrm{C}$ NMR spectrum of the derivative 9 f .

Figure S17. Copy of ${ }^{1} \mathrm{H}$ NMR spectrum of the derivative $\mathbf{9 g}$.

Figure S18. Copy of ${ }^{13} \mathrm{C}$ NMR spectrum of the derivative $\mathbf{9 g}$.

Figure S19. Copy of ${ }^{1} \mathrm{H}$ NMR spectrum of the derivative $\mathbf{9 h}$.

Figure S20. Copy of ${ }^{13} \mathrm{C}$ NMR spectrum of the derivative $\mathbf{9 h}$.

Figure S21. Copy of ${ }^{1} \mathrm{H}$ NMR spectrum of the derivative 10a.

Figure S22. Copy of ${ }^{13} \mathrm{C}$ NMR spectrum of the derivative 10a.

Figure S23. Copy of ${ }^{1} \mathrm{H}$ NMR spectrum of the derivative $\mathbf{1 0 g}$.

Figure S24. Copy of ${ }^{13} \mathrm{C}$ NMR spectrum of the derivative $\mathbf{1 0 g}$.

Figure S25. Copy of ${ }^{1} \mathrm{H}$ NMR spectrum of the derivative 11a at $25^{\circ} \mathrm{C}$.

Figure S26. Copy of ${ }^{13} \mathrm{C}$ NMR spectrum of the derivative 11a at $25^{\circ} \mathrm{C}$.

Figure S27. Copy of ${ }^{1} \mathrm{H}$ NMR spectrum of the derivative 11a at $75^{\circ} \mathrm{C}$.

Figure S28. Copy of ${ }^{13} \mathrm{C}$ NMR spectrum of the derivative 11a at $75{ }^{\circ} \mathrm{C}$.

Figure S29. Copy of ${ }^{1} \mathrm{H}$ NMR spectrum of the derivative 11b.

Figure S30. Copy of ${ }^{13} \mathrm{C}$ NMR spectrum of the derivative 11b.

Figure S31. Copy of ${ }^{1} \mathrm{H}$ NMR spectrum of the derivative 11 c .

Figure S32. Copy of ${ }^{13} \mathrm{C}$ NMR spectrum of the derivative 11 c .

Figure S33. Copy of ${ }^{1} \mathrm{H}$ NMR spectrum of the derivative 11 d .

Figure S34. Copy of ${ }^{13} \mathrm{C}$ NMR spectrum of the derivative 11d.

Figure S35. Copy of ${ }^{1} \mathrm{H}$ NMR spectrum of the derivative 11e.

Figure S36. Copy of ${ }^{13} \mathrm{C}$ NMR spectrum of the derivative $\mathbf{1 1 e}$.

Figure S37. Copy of ${ }^{1} \mathrm{H}$ NMR spectrum of the derivative 11f.

Figure S38. Copy of ${ }^{13} \mathrm{C}$ NMR spectrum of the derivative 11f.

Figure S39. Copy of ${ }^{1} \mathrm{H}$ NMR spectrum of the derivative $\mathbf{1 1 g}$.

Figure S40. Copy of ${ }^{13} \mathrm{C}$ NMR spectrum of the derivative $\mathbf{1 1 g}$.

Figure S41. Copy of ${ }^{1} \mathrm{H}$ NMR spectrum of the derivative $\mathbf{1 1 h}$.

Figure S42. Copy of ${ }^{13} \mathrm{C}$ NMR spectrum of the derivative $\mathbf{1 1 h}$.

Figure S43. Copy of ${ }^{1} \mathrm{H}$ NMR spectrum of the derivative 12a.

Figure S44. Copy of ${ }^{13} \mathrm{C}$ NMR spectrum of the derivative 12a.

Figure S45. Copy of ${ }^{1} \mathrm{H}$ NMR spectrum of the derivative $\mathbf{1 2 b}$.

Figure S46. Copy of ${ }^{13} \mathrm{C}$ NMR spectrum of the derivative 12b.

Figure S47. Copy of ${ }^{1} \mathrm{H}$ NMR spectrum of the derivative $\mathbf{1 2 g}$.

Figure S48. Copy of ${ }^{13} \mathrm{C}$ NMR spectrum of the derivative 12g.

Figure S49. Copy of ${ }^{1} \mathrm{H}$ NMR spectrum of the derivative 13a.

Figure S50. Copy of ${ }^{13} \mathrm{C}$ NMR spectrum of the derivative 13a.

Figure S51. Copy of ${ }^{1} \mathrm{H}$ NMR spectrum of the derivative 13b.

Figure S52. Copy of ${ }^{13} \mathrm{C}$ NMR spectrum of the derivative 13b.

Figure S53. Copy of ${ }^{1} \mathrm{H}$ NMR spectrum of the derivative 13c.

Figure S54. Copy of ${ }^{13} \mathrm{C}$ NMR spectrum of the derivative $\mathbf{1 3 c}$.

Figure S55. Copy of ${ }^{1} \mathrm{H}$ NMR spectrum of the derivative 13d.

Figure S56. Copy of ${ }^{13} \mathrm{C}$ NMR spectrum of the derivative 13d.

Figure S57. Copy of ${ }^{1} \mathrm{H}$ NMR spectrum of the derivative $\mathbf{1 3 e}$.

Figure S58. Copy of ${ }^{13} \mathrm{C}$ NMR spectrum of the derivative $\mathbf{1 3 e}$.

Figure S59. Copy of ${ }^{1} \mathrm{H}$ NMR spectrum of the derivative $\mathbf{1 3 f}$.

Figure S60. Copy of ${ }^{13} \mathrm{C}$ NMR spectrum of the derivative $\mathbf{1 3 f}$.

Figure S61. Copy of ${ }^{1} \mathrm{H}$ NMR spectrum of the derivative 13g.

Figure S62. Copy of ${ }^{13} \mathrm{C}$ NMR spectrum of the derivative 13g.

Figure S63. Copy of ${ }^{1} \mathrm{H}$ NMR spectrum of the derivative $\mathbf{1 3 h}$.

Figure S64. Copy of ${ }^{13} \mathrm{C}$ NMR spectrum of the derivative 13h.

Figure S65. Copy of ${ }^{1} \mathrm{H}$ NMR spectrum of the derivative $\mathbf{1 4 a}$.

Figure S66. Copy of ${ }^{13} \mathrm{C}$ NMR spectrum of the derivative 14a.

Figure S67. Copy of ${ }^{1} \mathrm{H}$ NMR spectrum of the derivative $\mathbf{1 4 b}$.

Figure S68. Copy of ${ }^{13} \mathrm{C}$ NMR spectrum of the derivative $\mathbf{1 4 b}$.

Figure S69. Copy of ${ }^{1} \mathrm{H}$ NMR spectrum of the derivative $\mathbf{1 4 g}$.

Figure S70. Copy of ${ }^{13} \mathrm{C}$ NMR spectrum of the derivative $\mathbf{1 4 g}$.

Table S1. ${ }^{13} \mathrm{C}$ chemical shifts ($\delta_{\mathrm{C}}, \mathrm{ppm}$) and characteristic increments $\left(I^{C}\right)$ for the ${ }^{13} \mathrm{C}$ chemical shift differences (relative to 3-phenylquinoxaline-2-carbonitrile 1,4-dioxide ${ }^{8}$) for the piperazine group for $\mathbf{4 b} \mathbf{b}$ and 13-14a.
Position

Copies of HRMS ESI Analysis

Figure S71. Copy of HRMS ESI analysis of the derivatives 6.
+MS, 0.1-0.3min \#(4-15)

Figure S72. Copy of HRMS ESI analysis of the derivatives 3.
+MS, 0.1-0.3min \#(4-17)

Figure S73. Copy of HRMS ESI analysis of the derivatives 9a.
+MS, 0.2-0.9min \#(10-54)

$\begin{array}{r} \text { Intens. } \\ \times 10^{5} \\ 2.5 \\ 2.0 \\ 2.5 \\ 1.0 \\ 0.0 \\ 0.0 \end{array}$		970		+M	, 0.2-0	9 min \#	-54)
	500			00	00	2500	m/2
\#	m/z	Res.	S/N	1	1 \%		
1	341.1615	6186	2400.5	124409	79.6		
2	407.1279	6647	849.3	58537	37.4		
3	537.6982	7465	434.7	44717	28.6		
4	538.1970	7409	1520.7	156325	100.0		
5	538.6981	7474	833.3	85759	54.9		
6	539.1972	7466	1031.7	106137	67.9		
7	539.6984	7516	501.9	51691	33.1		
8	540.1958	7498	451.8	46536	29.8		
9	596.5933	7646	388.5	39528	25.3		
10	681.3122	7832	364.0	36324	23.2		

Figure S74. Copy of HRMS ESI analysis of the derivatives 9c.
+MS, 0.0-0.1min \#(2-6)

Figure S75. Copy of HRMS ESI analysis of the derivatives 9d.

+MS, 0.1-0.3min \#(4-18)

\#	m/z	Res. S/N	I	1 \%
1	299.1131		28241	35.4
2	355.1752		79705	100.0
3	525.3031		16442	20.6
4	709.3426		8367	10.5
5	726.3561		11800	14.8

Figure S76. Copy of HRMS ESI analysis of the derivatives $9 \mathbf{e}$.
+MS, 0.0-0.1min \#(2-6)

Figure S77. Copy of HRMS ESI analysis of the derivatives $9 f$.
+MS, 0.0-0.1min \#(2-8)

Figure S78. Copy of HRMS ESI analysis of the derivatives 9 g .
+MS, 0.1-0.9min \#(5-56)

Figure S79. Copy of HRMS ESI analysis of the derivatives $\mathbf{9 h}$.
+MS, 0.0-0.1min \#(2-8)

Figure S80. Copy of HRMS ESI analysis of the derivatives $\mathbf{1 0 a}$.
+MS, 0.1-0.3min \#(4-18)

Figure S81. Copy of HRMS ESI analysis of the derivatives $\mathbf{1 0 g}$.
+MS, 0.1-0.3min \#(4-17)

Figure S82. Copy of HRMS ESI analysis of the derivatives $\mathbf{6}$.
+MS, 0.1-0.5min \#(5-27)

\#	\mathbf{m} / \mathbf{z}	Res.	\mathbf{S} / \mathbf{N}	\mathbf{I}	$\mathbf{I} \%$
1	321.1547	8146	1447.4	26111	100.0
2	323.1701	8022	346.5	6118	23.4
3	324.1739	7723	266.2	4855	18.6
4	345.1506	7926	241.0	5371	20.6

Figure S83. Copy of HRMS ESI analysis of the derivatives 11a.

Figure S84. Copy of HRMS ESI analysis of the derivatives 11b.

\#	\mathbf{m} / \mathbf{z}	\mathbf{I}	$\mathbf{I} \%$
1	253.1126	43917	100.0
2	254.1153	5964	13.6
3	255.1264	2900	6.6
4	269.1068	12812	29.2
5	270.1115	1830	4.2
6	537.2022	2520	5.7
7	596.5955	1875	4.3

Figure S85. Copy of HRMS ESI analysis of the derivatives 11c.

Figure S86. Copy of HRMS ESI analysis of the derivatives 11d.

\#	\mathbf{m} / \mathbf{z}	Res.	S/N	\mathbf{I}
1	353.1591			$\mathbf{I} \%$
2	370.1853			3472
3	375.1400 .0	46.8		
4	391.1142			1736

Figure S87. Copy of HRMS ESI analysis of the derivatives 11e.
+MS, 0.1-0.5min \#(7-27)

\#	\mathbf{m} / \mathbf{z}	Res.	\mathbf{S} / \mathbf{N}	\mathbf{I}	$\mathbf{I} \%$
1	319.0638	7519	388.8	7650	54.1
2	339.1480	7736	588.8	14134	100.0
3	375.1244	7834	270.8	8437	59.7
4	377.1115	7654	176.6	5521	39.1

Figure S88. Copy of HRMS ESI analysis of the derivatives 11f.

Figure S89. Copy of HRMS ESI analysis of the derivatives $\mathbf{1 1 g}$.

Figure S90. Copy of HRMS ESI analysis of the derivatives 11h.
+MS, 0.1-0.5min \#(5-27)

\#	\mathbf{m} / \mathbf{z}	Res.	\mathbf{S} / \mathbf{N}	\mathbf{I}	$\mathbf{I} \%$
1	341.1613	8349	1862.3	49932	100.0
2	342.1639	8044	338.7	9166	18.4
3	363.1412	8508	364.5	11685	23.4
4	379.1153	8442	395.1	13837	27.7

Figure S91. Copy of HRMS ESI analysis of the derivatives 12a.

$\#$	\mathbf{m} / \mathbf{z}	Res.	\mathbf{S} / \mathbf{N}	\mathbf{I}	$\mathbf{I} \%$
1	355.1155			69565	100.0
2	357.1136			25547	36.7
3	374.1391			24889	35.8
4	377.0968			16095	23.1

Figure S92. Copy of HRMS ESI analysis of the derivatives 12b.
+MS, 0.2-2.0min \#(11-120)

\#	\mathbf{m} / \mathbf{z}	\mathbf{I}	$\mathbf{I} \%$
1	258.1736	32261	2.6
2	269.0817	1258314	100.0
3	270.0831	150913	12.0
4	271.0792	381093	30.3
5	272.0813	50373	4.0

Figure S93. Copy of HRMS ESI analysis of the derivatives $\mathbf{1 2 g}$.

Figure S94. Copy of HRMS ESI analysis of the derivatives 13a.
+MS, 0.0-0.2min \#(2-11)

Figure S95. Copy of HRMS ESI analysis of the derivatives 13b.
+MS, 0.0-0.2min \#(2-12)

Figure S96. Copy of HRMS ESI analysis of the derivatives 13c.
+MS, 0.0-0.2min \#(2-12)

Figure S97. Copy of HRMS ESI analysis of the derivatives 13d.
+MS, 0.0-0.2min \#(2-12)

Figure S98. Copy of HRMS ESI analysis of the derivatives 13e.
+MS, 0.0-0.3min \#(2-16)

Figure S99. Copy of HRMS ESI analysis of the derivatives 13f.
+MS, 0.0-0.2min \#(2-12)

Figure S100. Copy of HRMS ESI analysis of the derivatives 13g.
+MS, 0.1-0.2min \#(3-12)

Figure S101. Copy of HRMS ESI analysis of the derivatives 13h.
+MS, 0.0-0.2min \#(2-11)

Figure S102. Copy of HRMS ESI analysis of the derivatives 14a.
+MS, 0.1-0.3min \#(3-16)

Figure S103. Copy of HRMS ESI analysis of the derivatives 14b.
+MS, 0.1-0.1min \#(3-8)

Figure S104. Copy of HRMS ESI analysis of the derivatives $\mathbf{1 4 g}$
+MS, 0.0-0.1min \#(2-4)

Copies of HPLC Analysis

Figure S105. Copy HPLC analysis of the derivative 3.
a Compound $\mathbf{3}$ prepared from quinoxaline 1,4-dioxide $\mathbf{2}\left(\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{F}\right)$ as described in [10]

b Compound $\mathbf{3}$ prepared as described in Scheme 1

1 PDA Multi $1 / 360 \mathrm{~mm} 4 \mathrm{~nm}$
PDAChl 360nm 4nm

Peakd̈	Ret. Time	Area	Height	Area\%
1	8.678	12957	1614	0.735
2	9.079	10517	1126	0.597
3	9.454	1681663	171300	95.395
4	12.721	17831	2672	1.011
5	14.473	30036	4304	1.704
6	27.003	9841	1284	0.558
Total		1762845	182300	100.000

Method Filename	:FOS Av.lcm	23.09.2021 12:28:24		Method Filename	; FOS Av.lem	23.09.2021 13:18:44	
				Time	Unit	${ }^{\text {Command }}$	Valu 20
Time	Unit	Command	Valu	0.01	Pumps	${ }^{\text {B.Conc }}$	60
0.01	Pumps	B.Cone	20	30.00	Pumps	B.Conc B.conc	20
30,00	Pumps	B.Cone	60	33.00	Pumps	Stop	
33.00	Pumps	B.Conc	20	45.00	Controller	P	
45.00	Controller	Stop					

[^0]Shimadzu LC-20 AD; Sysiem - FOS Coloa-Kromasil-100-5mkm. C-18, 4,6x250 mm. N 6251

Figure S106. Copy HPLC analysis of the derivative 13a.

Chromatogram
CHEK-1345 C:LLabSolutions/DataVCHEKVCA I 0226-06.led

1 PDA Multi 1/294nm 4nm
PeakTable
PDA Ch1 294nm 4nm

Peakeß	Ret. Time	Area	Height	Area \%
1	15.611	7505673	538266	99.566
2	21.871	32699	4659	0.434
Total		7538372	542925	100.000

Method

<<LC Program>>			Command
Time	Unit	Value	
0.10	Pumps	B.Conc	15
20.00	Pumps	B.Conc	40
30.00	Pumps	B.Conc	70
33.00	Pumps	B.Conc	15
45.90	Controller	Stop	

Method Filename : FOS Av.lcm

Shimadzu LC-20AD; 2-System FOS, Colon Kromasil 100-C18,.size 5mkm, 4,64250mm, N 62512 Elution: A - H3PO4 $0.01 \mathrm{M} \mathrm{pH} 2.6 ;$ B - MeCN , fl. $1,0 \mathrm{ml} / \mathrm{min}$, loop 20 mkl .

Figure S107. Copy HPLC analysis of the derivative 13b.

Chromatogram
CHEK-1474 C:ILabSolutionsDatalCHEKICA L 0209-07.led

1PDA Multi 1
| PD: Multi I/290mm 4 nm
PeakTable

Pl) Chl 290 nm 4 nm			Height	Area \%
リcal	Ret. Time	Area	Height 281274	Area 97.672
1	15.711	3221582 16986	1511	0.515
2	16.638	16986 23291	2536	0.706
3	19.641	23291	2720	0.794
4	22.015 27.432	26181 10320	1551	0.313
5	27.432	3298360	289593	100.000

Method

$\ll 1 . C$ l'rugram \gg		Command	Value
Time	Unit	B.Conc	15
0.10	Pumps	Bumps	B.Conc
20.011	Pumps	B.Conc	40
30.117	Pumps	B.Conc	70
33.101	Controller	Stop	15
45.101			

Shthal Filename $:$ FOS Av.Icm
S. 1 亿 LC-20AD; 2-System FOS, Colon Kromasil 100 -C18, size $5 \mathrm{mkm}, 4,6 * 250 \mathrm{~mm}, \mathrm{~N} 86912$
I. $\quad \mathrm{A}-\mathrm{H} 3 \mathrm{PO} 40.01 \mathrm{M} \mathrm{pH} 2.6$; B $-\mathrm{MeCN}, \mathrm{fl} .1,0 \mathrm{ml} / \mathrm{min}$, loop 20 mkl .

Figure S108. Copy HPLC analysis of the derivative 13c.

Chromatogram
CHEK-1477 CylabSolutions\DatalCHEKICA L 0209-05.led

1 PDA Multi $1 / 290 \mathrm{~nm} 4 \mathrm{~nm}$
PeakTable

PDA Chl 290nm 4nm
$\|r\| r c a k \# t$
1

$\ll 1 . C$ Program>>

Tius	Unit	Command	Value
0.10	Pumps	B.Conc	15
20100	Pumps	B.Conc	40
30,00	Pumps	B.Conc	70
33.00	Pumps	B.Conc	15
45,00	Controller	Stop	

Method Filename : FOS Av.lcm
Shimadzu LC-20AD; 2-System FOS, Colon Kromasil 100-C18, size $5 \mathrm{mkm}, 4,6^{\circ} 250 \mathrm{~mm}, \mathrm{~N} 86912$
1 hion: A - H3PO4 0.01 M pH 2.6; B - MeCN, fl. $1,0 \mathrm{ml} / \mathrm{min}$, loop 20 mkl .

Figure S109. Copy HPLC analysis of the derivative 13d.

1 PDA Multi 1/290nm 4nm

PeakTable

Peak\#	Ret. Time	Area	Height	Area \%
1	15.453	14912	1063	0.371
2	15.828	17387	2006	0.432
3	16.400	3942125	332461	98.019
4	20.416	17626	1987	0.438
5	22.736	18688	2134	0.465
6	29.857	11054	1759	0.275
Total		4021792	341409	100.000

Method

$\ll 1, C$ Program \gg		Command	Value
Time	Unit	B.Conc	15
0.10	Pumps	B.Conc	40
20.00	Pumps	B.Conc	70
30,00	Pumps	B.Conc	15
33,00	Controller	Stop	
45,00			

Si innadzu LC-20AD; 2-System FOS, Colon Kromasil 100-C18, size 5mkm, 4,6*250mm, N 86912
lihtion: A - H3PO4 0.01 M pH 2.6 ; B - MeCN, fl. $1,0 \mathrm{ml} / \mathrm{min}$, loop 20 mkl .

Figure S110. Copy HPLC analysis of the derivative 13e.

| PDA Multi $1 / 300 \mathrm{~nm} 4 \mathrm{~nm}$
PeakTable
PDA ChI 300nm 4nm

Peakt	Ret. Time	Area	Height	Area \%
1	9.637	29688	989	0.609
2	10.142	30974	1715	0.636
3	11.236	4550228	366255	93.362
4	12.475	48296	2787	0.991
5	15.021	84025	8431	1.724
6	17.173	130534	14623	2.678
Total		4873746	394799	100.000

Method

\ll LC Program \gg Time
0.10 30.00
33.00
43.00
Unit
Pumps
Pumps
Pumps
Controller

Controller

Command	Value
B.Cone	20
B.Cone	60
B.Cone	20
Stop	

Method Filename :FOS By.Icm

Shimadzu LC-20AD; 2-System FOS, Colon Kromasil 100-C18, size $5 \mathrm{mkm}, 4,6^{*} 250 \mathrm{~mm}, \mathrm{~N} 86912$
Elution: $\mathrm{A}=\mathrm{H} 3 \mathrm{PO} 40.01 \mathrm{M} \mathrm{pH} 2.6 ; \mathrm{B}=\mathrm{MeCN}, \mathrm{fl} .1,0 \mathrm{ml} / \mathrm{min}$, loop 20 mkl .

Figure S111. Copy HPLC analysis of the derivative 13f.

Chromatogram
CHEK-1480 C:1LabSolutions\DataVCHEKCA L 0209-03.Ied

1PDA Multi

1 PDA Multi $1 / 290 \mathrm{~mm} 4 \mathrm{~nm}$

PcakTable

PDA Ch1 290nm 4nm

Peaki	Ret. Time	Area	Height	Area\%
1	3.681	10073	805	0.573
2	16.669	1723323	146937	98.044
3	20.499	13562	1595	0.772
4	27.834	10753	1751	0.612
Total		1757712	151087	100.000

Method

\ll L.C Program>>		Command	Value
Time	Unit	B.Conc	15
0.10	Pumps	B.Conc	40
20.00	Pumps	B.Conc	70
30.00	Pumps	B.Conc	15
33.00	Pumps	Stop	
45.00	Controller		

[^1]Shinadzu LC-20AD; 2-System FOS, Colon Kromasil 100-C18, size 5 mkm, 4,6*250mm, N 86912
thation: A - H3PO4 $0.01 \mathrm{M} \mathrm{pH} 2.6 ; \mathrm{B}=\mathrm{MeCN}, \mathrm{fl} .1,0 \mathrm{ml} / \mathrm{min}$, loop 20 mkl .

Figure S112. Copy HPLC analysis of the derivative $\mathbf{1 3 g}$.

1 PDA Multi $1 / 298 \mathrm{~nm} 4 n m$

		PeakTable		
PDA Chl 298 nm 4 nm				
Peak	Ret. Time	Area	Height	Area \%
1	10.809	58271	1728	0.795
2	11.427	132338	16936	1.807
3	16.613	7001975	473677	95.585
4	22.908	22119	2471	0.302
5	29.703	110656	16629	1.511
Total		7325359	511440	100.000

Method

\ll LC Program \gg			Command
Time	Unit	V.Conc	15
0.10	Pumps	B.Conc	40
20.00	Pumps	B.Conc	70
30.00	Pumps	B.Conc	15
33.00	Pumps	Stop	
45.00	Controller		

Method Filename ; FOS Av.lom
Shimadzu LC-20AD; 2-System FOS, Colon Kromasil 100-C18,size 5mkm, 4,6*250mm, N 86912 Elution: A - H3PO4 0.01 M pH 2.6 ; B - MeCN, fl. $1,0 \mathrm{ml} / \mathrm{min}$, loop 20 mkl .

Figure S113. Copy HPLC analysis of the derivative 13h.

Method

celC Program>>			
Time	Unit	Command	Value
0.10	Pumps	B.Cone	30
30.00	Pumps	B.Cone	70
32.00	Pumps	B.Conc	30
43.00	Controller	Stop	

Method Filename ; FOS B.lcm

Shimadzu LC-20AD; 2-System FOS, Colon Kromasil 100 -C18, size $5 \mathrm{mkm}, 4,6{ }^{*} 250 \mathrm{~mm}, \mathrm{~N} 86912$ Elution: A - H3PO4 0.01 M pH 2.6 ; B - MeCN, fl. $1,0 \mathrm{ml} / \mathrm{min}$, loop 20 mkl .

Figure S114. Copy HPLC analysis of the derivative 14a.

Chromatogram
BG-2 CNLabSolutionsiDumiCHEKNGGR0127-004,Iod

1 PDA Multi 1/290mm 4 mm

PDAChl 290 nm 4 nm

Time	Unit	Command	Vallu
0.01	Pumps	B.Cone	20
30.00	Pumps	B.Conc	60
33.00	Pumps	B.Cone	20
45.00	Controller	Ssop	

Shimadzu LC-20AD; System-FOS Colon-Kromasil-100-5mkm C-18, 4,6x250 mm. N 62511 Elution: A - H3PO4 0,01M pH 2,6; B - MeCN, $\mathbf{G}=1.0 \mathrm{ml} / \mathrm{min}$, loop 20 mki

Figure S115. Copy HPLC analysis of the derivative 14b.

1 PDA Multi $1 / 290 n \mathrm{~m}$ 4nm
PDACh1 290nm 4nm

Penla	Ret Time	Aren	Heapht	Area $\%$
1	12.704	5196493	374968	98.549
2	16.661	38639	4417	0.733
3	19.014	37890	4288	0.719
Total		5273023	383673	100.000

Method Filename :FOS Av1Im 27.01.2021 13:27:12

Time	Unit	Commend	Valu
0.01	Pumps	B.Cone	20
30.00	Pumpe	B.Cone	60
33.00	Pumps	Buone	20
45.00	Controller	Stop	

Shimedze LC-20 AD: System = FOS Colon-Kromasil-100-5mkm. C-18, 4,69250 mm. N 62511 Elution= A - H3PO4 $0,01 \mathrm{MpH} 2,6 ; \mathrm{B}$ - MeCN, $\mathrm{fl}-1.0 \mathrm{mVmin}$, loop 20 mk

Figure S116. Copy HPLC analysis of the derivative $\mathbf{1 4 g}$.

Method Filename : FOS Av1.lcm 18.10.2021 15:08:02

Time	Unit	Command	Valu
0.01	Pumps	B.Cone	20
30.00	Pumps	B.Conc	60
33.00	Pumps	B.Conc	20
45.00	Controller	Stop	

Shimadzu LC-20 AD; System - FOS Colon- Kromasil-100-5mkm. C-18, 4,6×250 mm. N 62511 Elution: A - H3PO4 $0,01 \mathrm{M} \mathrm{pH} 2,6 ; \mathrm{B}-\mathrm{MeCN}$, fl $-1.0 \mathrm{ml} / \mathrm{min}$, loop 20 mkl

Table S2. Experimental parameters of aqueous solubility ($\mathrm{pH}=7$) of some derivatives $\mathbf{4 a - c}$, 13a and $\mathbf{1 4 a}$ at $23{ }^{\circ} \mathrm{C}$.

Compound	Experimental solubility $(\mathbf{m g} / \mathbf{m L})$
$\mathbf{4 a * H C l}$	14.3 ± 0.3
$\mathbf{4 b *} \mathbf{H C l}$	1.2 ± 0.1
$\mathbf{4 c *} \mathbf{H C l}$	0.17 ± 0.02
$\mathbf{1 3 a} * \mathbf{H C l}$	0.9 ± 0.1
$\mathbf{1 4 a} * \mathbf{H C l}$	0.03 ± 0.05
$\mathbf{1 4 a} * \mathbf{M s O H}$	0.6 ± 0.1

[^0]: Shimadza LC-20 AD; Sysiem - FOS Colon- Kromasil-100-5mkm. C-18, 4,6x250 mm. N 62511 Elution: A- H3PO4 $0,01 \mathrm{M} \mathrm{pH} 2,6 ; \mathrm{B}-\mathrm{MeCN}$, fl-1.0 m/min, loop 20 mk

[^1]: Mshod Filename : FOS Av.lcm

