Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

Synthesis of 7-amino-6-halogeno-3-phenylquinoxaline-2-carbonitrile 1,4-dioxides: A way forward for targeting hypoxia and drug resistance of cancer cells

Galina I. Buravchenko ^{a,b}, Alexander M. Scherbakov ^c, Lyubov G. Dezhenkova ^a, Lianet Monzote ^d, Andrey E. Shchekotikhin ^{a,*}

^a Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia

^b Mendeleyev University of Chemical Technology, 9 Miusskaya Square, Moscow 125190, Russia

^c Blokhin National Medical Research Center of Oncology, 24 Kashirskoye sh., Moscow 115522, Russia

^d Department of Parasitology, Pedro Kouri Tropical Medicine Institute, Havana, Cuba

* Corresponding author:

Andrey E. Shchekotikhin e-mail: shchekotikhin@mail.ru

Legends to Figures and Tables

Figure S1-S65, Table S1. ¹ H and ¹³ C NMR spectra of new compounds.	S2
Figure S71-S104. Copies of HRMS ESI spectra.	S38
Figure S105-S116. Copies of HPLC analysis.	S72
Table S2. Experimental parameters of aqueous solubility (pH=7) of some derivatives 4a-c, 13a	
and 14a at 23 °C.	S84

Copies of NMR Spectra

Figure S1. Copy of ¹H NMR spectrum of the derivative 6.

Figure S2. Copy of ¹³C NMR spectrum of the derivative 6.

Figure S4. Copy of ¹³C NMR spectrum of the derivative 7.

Figure S5. Copy of ¹H NMR spectrum of the derivative 9a.

Figure S6. Copy of ¹³C NMR spectrum of the derivative 9a.

Figure S7. Copy of ¹H NMR spectrum of the derivative 9b.

Figure S8. Copy of ¹³C NMR spectrum of the derivative 9b.

Figure S10. Copy of ¹³C NMR spectrum of the derivative 9c.

Figure S11. Copy of ¹H NMR spectrum of the derivative 9d.

Figure S12. Copy of ¹³C NMR spectrum of the derivative 9d.

Figure S14. Copy of ¹³C NMR spectrum of the derivative 9e

Figure S16. Copy of ¹³C NMR spectrum of the derivative 9f.

Figure S17. Copy of ¹H NMR spectrum of the derivative 9g.

Figure S18. Copy of ¹³C NMR spectrum of the derivative 9g.

Figure S19. Copy of ¹H NMR spectrum of the derivative 9h.

Figure S20. Copy of ¹³C NMR spectrum of the derivative 9h.

Figure S21. Copy of ¹H NMR spectrum of the derivative 10a.

Figure S22. Copy of ¹³C NMR spectrum of the derivative 10a.

Figure S23. Copy of ¹H NMR spectrum of the derivative 10g.

Figure S24. Copy of ¹³C NMR spectrum of the derivative 10g.

Figure S25. Copy of ¹H NMR spectrum of the derivative 11a at 25 °C.

Figure S26. Copy of ¹³C NMR spectrum of the derivative 11a at 25 °C.

Figure S28. Copy of ¹³C NMR spectrum of the derivative 11a at 75 °C.

Figure S29. Copy of ¹H NMR spectrum of the derivative 11b.

Figure S31. Copy of ¹H NMR spectrum of the derivative 11c.

Figure S32. Copy of ¹³C NMR spectrum of the derivative 11c.

Figure S33. Copy of ¹H NMR spectrum of the derivative 11d.

Figure S34. Copy of ¹³C NMR spectrum of the derivative 11d.

Figure S35. Copy of ¹H NMR spectrum of the derivative 11e.

Figure S36. Copy of ¹³C NMR spectrum of the derivative 11e.

Figure S37. Copy of ¹H NMR spectrum of the derivative 11f.

Figure S38. Copy of ¹³C NMR spectrum of the derivative 11f.

Figure S39. Copy of ¹H NMR spectrum of the derivative 11g.

Figure S40. Copy of ¹³C NMR spectrum of the derivative 11g.

Figure S41. Copy of ¹H NMR spectrum of the derivative 11h.

Figure S42. Copy of ¹³C NMR spectrum of the derivative 11h.

Figure S44. Copy of ¹³C NMR spectrum of the derivative 12a.

Figure S45. Copy of ¹H NMR spectrum of the derivative 12b.

Figure S46. Copy of ¹³C NMR spectrum of the derivative 12b.

Figure S47. Copy of ¹H NMR spectrum of the derivative **12g**.

Figure S48. Copy of ¹³C NMR spectrum of the derivative 12g.

Figure S50. Copy of ¹³C NMR spectrum of the derivative 13a.

Figure S51. Copy of ¹H NMR spectrum of the derivative 13b.

Figure S52. Copy of ¹³C NMR spectrum of the derivative 13b.

Figure S53. Copy of ¹H NMR spectrum of the derivative 13c.

Figure S54. Copy of ¹³C NMR spectrum of the derivative 13c.

Figure S56. Copy of ¹³C NMR spectrum of the derivative 13d.

Figure S57. Copy of ¹H NMR spectrum of the derivative 13e.

Figure S58. Copy of ¹³C NMR spectrum of the derivative 13e.

Figure S59. Copy of ¹H NMR spectrum of the derivative 13f.

Figure S60. Copy of ¹³C NMR spectrum of the derivative 13f.

Figure S62. Copy of ¹³C NMR spectrum of the derivative 13g.

Figure S63. Copy of ¹H NMR spectrum of the derivative 13h.

Figure S64. Copy of ¹³C NMR spectrum of the derivative 13h.

Figure S65. Copy of ¹H NMR spectrum of the derivative 14a.

Figure S66. Copy of ¹³C NMR spectrum of the derivative 14a.

Figure S67. Copy of ¹H NMR spectrum of the derivative 14b.

Figure S68. Copy of ¹³C NMR spectrum of the derivative 14b.

Figure S70. Copy of ¹³C NMR spectrum of the derivative 14g.

Position		0⊝ ⊢ 10 ⁴ N⊕ Ph 3 ⁹ N⊕ CN 10 O⊖		$\begin{array}{c} O \ominus \\ 5 & 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 2 \\ 11 \\ 3 \\ 2 \\ 2 \\ 11 \\ 0 \\ 4c \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	F 0 7 HN	0⊖ 5 10 ⁴ N⊕ Pr 3 9 N⊕ CN 8 9 11 0⊖ 13a		$ \begin{array}{c} $
	$\delta_C(J, \mathrm{Hz})$	I^C	δ_{C}	I^C	$\delta_{C}(J,Hz)$	I^C	δ_{C}	I^C
C-2	118.8	-1.6	119.4	-1.0	120.5	+0.1	120.6	+0.2
C-3	142.9	+0.2	143.3	+0.6	142.3	-0.4	142.4	-0.3
C-9	131.9 (10.7)	-5.5	133.4	-4.0	135.1	-2.3	136.4	-1.0
C-10	136.9	-2.5	138.6	-0.8	130.8 (13.8)	-8.6	135.3	-4.1

Table S1. ¹³C chemical shifts (δ_c , ppm) and characteristic increments (I^c) for the ¹³C chemical shift differences (relative to 3-phenylquinoxaline-2-carbonitrile 1,4-dioxide⁸) for the piperazine group for 4b–c and 13–14a.

Copies of HRMS ESI Analysis

Figure S71. Copy of HRMS ESI analysis of the derivatives 6.

+MS, 0.1-0.3min #(4-15)

+MS, 0.1-0.3min #(4-17)

+MS, 0.2-0.9min #(10-54)

+MS, 0.0-0.1min #(2-6)

+MS, 0.1-0.3min #(4-18)

	+MS, 0.1-0.3min, Deconvoluted
1+ (A) 355.1752	
	1+ (C) 525.3031

#	m/z	Res.	S/N	1	1%
1	299.1131			28241	35.4
2	355.1752			79705	100.0
3	525.3031			16442	20.6
4	709.3426			8367	10.5
5	726.3561			11800	14.8

+MS, 0.0-0.1min #(2-6)

+MS, 0.0-0.1min #(2-8)

+MS, 0.1-0.9min #(5-56)

+MS, 0.0-0.1min #(2-8)

+MS, 0.1-0.3min #(4-18)

+MS, 0.1-0.3min #(4-17)

+MS, 0.1-0.5min #(5-27)

	+MS, 0.1-0.5min #(5-27)
1+ (A) 321 1547	
h	

#	m/z	Res.	S/N	1	1%
1	321.1547	8146	1447.4	26111	100.0
2	323.1701	8022	346.5	6118	23.4
3	324.1739	7723	266.2	4855	18.6
4	345.1506	7926	241.0	5371	20.6

Figure S84. Copy of HRMS ESI analysis of the derivatives 11b.

#	m/z	I	1%
1	253.1126	43917	100.0
2	254.1153	5964	13.6
3	255.1264	2900	6.6
4	269.1068	12812	29.2
5	270.1115	1830	4.2
6	537.2022	2520	5.7
7	596.5955	1875	4.3

Figure S85. Copy of HRMS ESI analysis of the derivatives 11c.

Figure S86. Copy of HRMS ESI analysis of the derivatives 11d.

#	m/z	Res.	S/N	1	1%
1	353.1591			7416	100.0
2	370.1853			3472	46.8
3	375.1400			1736	23.4
4	391.1142			4330	58.4

+MS, 0.1-0.5min #(7-27)

	+MS, 0.1-0.5min #(7-27)
1+ (A) 339.1480	
°L E	

#	m/z	Res.	S/N	1	1%
1	319.0638	7519	<mark>388.8</mark>	7650	54.1
2	339.1480	7736	588.8	14134	100.0
3	375.1244	7834	270.8	8437	59.7
4	377.1115	7654	176.6	5521	39.1

Figure S89. Copy of HRMS ESI analysis of the derivatives 11g.

+MS, 0.1-0.5min #(5-27)

	+MS, 0.1-0.5min #(5-27)
1+ (A) 341.1613	

#	m/z	Res.	S/N	1	1%
1	341.1613	8349	1862.3	49932	100.0
2	342.1639	8044	338.7	9166	18.4
3	363.1412	8508	364.5	11685	23.4
4	379.1153	8442	395.1	13837	27.7

Figure S91. Copy of HRMS ESI analysis of the derivatives 12a.

#	m/z	Res.	S/N	I	1%
1	355.1155			69565	100.0
2	357.1136			25547	36.7
3	374.1391			24889	35.8
4	377.0968			16095	23.1

+MS, 0.2-2.0min #(11-120)

	Group de Google Herbring and anno 1997.
1+ (A)	
269.0817	

#	m/z	1	1%
1	258.1736	32261	2.6
2	269.0817	1258314	100.0
3	270.0831	150913	12.0
4	271.0792	381093	30.3
5	272.0813	50373	4.0

Figure S93. Copy of HRMS ESI analysis of the derivatives 12g.

+MS, 0.0-0.2min #(2-11)

+MS, 0.0-0.2min #(2-12)

+MS, 0.0-0.2min #(2-12)

+MS, 0.0-0.2min #(2-12)

+MS, 0.0-0.3min #(2-16)

+MS, 0.0-0.2min #(2-12)

+MS, 0.1-0.2min #(3-12)

+MS, 0.0-0.2min #(2-11)

+MS, 0.1-0.3min #(3-16)

+MS, 0.1-0.1min #(3-8)

+MS, 0.0-0.1min #(2-4)

Copies of HPLC Analysis

Figure S105. Copy HPLC analysis of the derivative 3.

a Compound 3 prepared from quinoxaline 1,4-dioxide 2 (R₁=H, R₂=F) as described in [10]

b Compound 3 prepared as described in Scheme 1

b

Peak#	Ret. Time	Area	Height	Alca /e
1	8.678	12957	1614	0.73
2	9.079	10517	1126	0.59
2	9.454	1681663	171300	95.39
3	12 721	17831	2672	1.0
4	14.473	30036	4304	1.70
2	19.975	0941	1284	0.5
0	27.005	17/2945	192300	100.00
Total		1/02843	102.300	Toolo

Method Filename	: FOS Av.lcm	23.09.2021 12:28:24	
Time 0.01 30.00 33.00 45.00	Unit Pumps Pumps Pumps Controller	Command B.Conc B.Conc B.Conc Stop	Valu 20 60 20

Total

Method Filename	: FOS Av.lem	23.09.2021 13:18:44	
Time 0.01 30.00 33.00 45.00	Unit Pumps Pumps Pumps Controller	Command B.Conc B.Conc B.Conc Stop	Valu 20 60 20

Shimadzu LC-20 AD; System - FOS Colon- Kromasil-100-5mkm. C-18, 4,6x250 mm. N 62511 Elution: A - H3PO4 0,01M pH 2,6; B - MeCN, fl - 1.0 ml/min, loop 20 mkl

Shimadzu LC-20 AD; System - FOS Colon- Kromasil-100-5mkm. C-18, 4,6x250 mm. N 62511 Elution: A - H3PO4 0,01M pH 2,6; B - MeCN, fl - 1.0 ml/min, loop 20 mkl

Figure S106. Copy HPLC analysis of the derivative 13a.

PDA Ch1 294nm 4nm Area % Height 538266 Area 7505673 Ret. Time Peak# 99.566 15.611 1 0.434 32699 7538372 4659 21.871 2 100.000 542925 Total

	Me	thod	
< <lc program="">> Time 0.10 20.00 30.00 33.00 45.00</lc>	Unit Pumps Pumps Pumps Pumps Controller	Command B.Conc B.Conc B.Conc B.Conc Stop	Value 15 40 70 15

Method Filename : FOS Av.lcm

Shimadzu LC-20AD; 2-System FOS, Colon Kromasil 100-C18, size 5mkm, 4,6*250mm, N 62512 Elution: A - H3PO4 0.01M pH 2.6; B - MeCN, fl. 1,0 ml/min, loop 20mkl.

Figure S107. Copy HPLC analysis of the derivative 13b.

PDA Ch1 290nm 4nm Area % Height Ret. Time 15.711 Arca Peak? 97.672 281274 3221582 l 0.515 1511 16986 16.638 7 0.706 2536 23291 19.641 3 0.794 2720 26181 22.015 4 0.313 1551 10320 27.432 5 100.000 3298360 289593 l etal

	Me	thod	
<<1.C Program>> Time 0.10 20.00 30.00 33.00 45.00	Unit Pumps Pumps Pumps Pumps Controller	Command B.Cone B.Cone B.Cone B.Cone Stop	Value 15 40 70 15

Method Filename : FOS Av.lem

Shimadau LC-20AD; 2-System FOS, Colon Kromasil 100-C18, size 5mkm, 4,6*250mm, N 86912 Linford: A - H3PO4 0.01M pH 2.6; B - MeCN, fl. 1,0 ml/min, loop 20mkl.

2DA Ch1 290nm 4nm				
Peak#	Ret. Time	Area	Height	Area %
1	15.177	4146836	350548	96.756
2	16.550	32828	3927	0.766
3	19.005	36713	3821	0.857
4	19.164	21933	2689	0.512
5	21.344	47561	5519	1.110
Total		4285871	366503	100.000

<<1 C Programaca	Me	thod	
Time	Unit	Command	Value
0.10	Pumps	B.Conc	15
20.00	Pumps	B.Conc	40
30.00	Pumps	B.Conc	70
33.00	Pumps	B.Conc	15
45.00	Controller	Stop	

Method Filename : FOS Av.lcm

Shimadzu LC-20AD; 2-System FOS, Colon Kromasil 100-C18, size 5mkm, 4,6*250mm, N 86912 Elistion: A - H3PO4 0.01M pH 2.6; B - MeCN, fl. 1,0 ml/min, loop 20mkl.

Figure S109. Copy HPLC analysis of the derivative 13d.

1 TOX Male IT 2701111 Hat

PeakTable

Peak#	Ret. Time	Area	Height	Area %
1	15.453	14912	1063	0.371
2	15.828	17387	2006	0.432
3	16.400	3942125	332461	98.019
4	20.416	17626	1987	0.438
5	22 736	18688	2134	0.465
6	29.857	11054	1759	0.275
Total	27.001	4021792	341409	100.000

	Me	ethod	
<<1.C Program>> Time 0,10 20,00 30,00 33,00 45,00	Unit Pumps Pumps Pumps Pumps Controller	Command B.Conc B.Conc B.Conc B.Conc Stop	Value 15 40 70 15

Method Filename : FOS Av.lem

Shimadzu LC-20AD; 2-System FOS, Colon Kromasil 100-C18, size 5mkm, 4,6*250mm, N 86912 Elation: A - H3PO4 0.01M pH 2.6; B - MeCN, fl. 1,0 ml/min, loop 20mkl.

Figure S110. Copy HPLC analysis of the derivative 13e.

Method Filename

: FOS By.lcm

Shimadzu LC-20AD; 2-System FOS, Colon Kromasil 100-C18, size 5mkm, 4,6*250mm, N 86912 Elution: A - H3PO4 0.01M pH 2.6; B - MeCN, fl. 1,0 ml/min, loop 20mkl.

Figure S111. Copy HPLC analysis of the derivative 13f.

PDA Ch1 290nm 4nm Area % Height Ret. Time Area Peak# 0.573 805 10073 3.681 1 98.044 146937 1723323 16.669 2 0.772 13562 1595 20.499 3 0.612 1751 10753 27.834 4 151087 100.000 1757712 Total

	Me	shod	
< <lc program="">> Time 0.10 20.00 30.00 33.00 45.00</lc>	Unit Pumps Pumps Pumps Pumps Controller	Command B.Conc B.Conc B.Conc B.Conc Stop	Value 15 40 70 15

: FOS Av.lem Method Filename

Shimadzu LC-20AD; 2-System FOS, Colon Kromasil 100-C18, size 5mkm, 4,6*250mm, N 86912 Elation: A - H3PO4 0.01M pH 2.6; B - MeCN, fl. 1,0 ml/min, loop 20mkl.

Figure S112. Copy HPLC analysis of the derivative 13g.

1 PDA Multi 1 / 298nm 4nm

÷

PeakTable PDA Ch1 298nm 4nm Area % Height Area 58271 132338 Peak# Ret. Time 1728 0.795 10.809 1 16936 1.807 11.427 23 95.585 16.613 473677 7001975 0.302 22119 110656 2471 22.908 4 16629 1.511 29.703 5 100.000 7325359 511440 Total

141 - 24	Me	thod	
< <lc program="">> Time 0.10 20.00 30.00 33.00 45.00</lc>	Unit Pumps Pumps Pumps Pumps Controller	Command B.Conc B.Conc B.Conc B.Conc Stop	Value 15 40 70 15

Method Filename : FOS Av.lcm

Shimadzu LC-20AD; 2-System FOS, Colon Kromasil 100-C18, size 5mkm, 4,6*250mm, N 86912 Elution: A - H3PO4 0.01M pH 2.6; B - MeCN, fl. 1,0 ml/min, loop 20mkl.

Time	Unit	Command	Value
0.10	Pumps	B.Cone	30
30.00	Pumps	B.Conc	70
32.00	Pumps	B.Conc	30
43.00	Controller	Stop	

Method Filename : FOS B.lcm

Shimadzu LC-20AD; 2-System FOS, Colon Kromasil 100-C18, size 5mkm, 4,6*250mm, N 86912 Elution: A - H3PO4 0.01M pH 2.6; B - MeCN, fl. 1,0 ml/min, loop 20mkl.

Peak#	Ret. Time	Area	Height	Area %
1	12.641	3308849	285189	98.464
2	14.156	18139	1426	0.540
3	16.365	13052	1671	0.388
4	18.632	16172	1987	0.481
5	20.375	4251	1222	0.127
Total		3360462	291494	100.000

Method Filename

: FOS Av1.lcm

27.01.2021 15:04:11

Time	Unit	Command	Valu
0.01	Pumps	B.Conc	20
30.00	Pumps	B.Conc	60
33.00	Pumps	B.Conc	20
45.00	Controller	Stop	

Shimadzu LC-20 AD; System - FOS Colon- Kromasil-100-5mkm. C-18, 4,6x250 mm. N 62511 Elution: A - H3PO4 0,01M pH 2,6; B - MeCN, fl - 1.0 ml/min, loop 20 mkl

PCRK#	Ret. Time	Area	Height	Area %
1	12.704	5196493	374968	98.549
2	16.661	38639	4417	0.733
3	19.014	37890	4288	0.719
Total		5273023	383673	100.000

Method Filename

: FOS Av1.lcm

27.01.2021 13:27:12

-

Time 0.01 30.00 33.00 45.00 Unit Pumps Pumps Pumps Controller Command B.Conc B.Conc B.Conc Stop

Shimadzu LC-20 AD; System - FOS Colon- Kromasil-100-5mkm. C-18, 4,6x250 mm. N 62511 Elution: A - H3PO4 0,01M pH 2,6; B - MeCN, fl - 1.0 ml/min, loop 20 mkl

377833

-

Method Filename

5

Total

14.729

5542343

: FOS Av1.lcm

18.10.2021 15:08:02

Time	Unit	Command	Valu
0.01	Pumps	B.Conc	20
30.00	Pumps	B.Conc	60
33.00	Pumps	B.Conc	20
45.00	Controller	Stop	

Shimadzu LC-20 AD; System - FOS Colon- Kromasil-100-5mkm. C-18, 4,6x250 mm. N 62511 Elution: A - H3PO4 0,01M pH 2,6; B - MeCN, fl - 1.0 ml/min, loop 20 mkl

Table S2. Experimental parameters of aqueous solubility (pH=7) of some derivatives **4a-c**, **13a** and **14a** at 23 °C.

Compound	Experimental solubility	
Compound	(mg/mL)	
4a*HCl	14.3±0.3	
4b*HCl	1.2±0.1	
4c*HCl	0.17±0.02	
13a*HCl	0.9±0.1	
14a*HCl	0.03±0.05	
14a*MsOH	0.6±0.1	