Supplementary Information

Structural effect of Ni/TiO₂ on CO methanation: improved activity

and enhanced stability

Jie Zhang, Xinyu Jia and Chang-jun Liu*

School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,

China

* Corresponding author. Tel.: +86 22 27406490.

E-mail addresses: cjL@tju.edu.cn (C.-J. Liu).

Sample	$S_{BET}(m^2/g)$	V_{pore} (cm ³ /g)	D _{pore} (nm)
TiO ₂	13.2	0.03	9.1
Ni/TiO ₂ -C	14.1	0.04	10.2
Ni/TiO ₂ -P	15.1	0.03	8.5

Table S1 Textural properties of the $\rm TiO_2$ support and the $\rm Ni/TiO_2$ catalysts.

The Ni $2p_{3/2}$ spectra of the Ni/TiO₂ catalysts are shown in Fig. S1. The Ni species exists in both elemental state (Ni⁰) centered at 851.8 eV and oxidized state (Ni²⁺) centered at 855.0 eV, along with a satellite located at 860.4 eV.^{S1, S2} The oxidic Ni²⁺ can be assigned to NiO from the air exposure. Compared to the standard binding energy (BE) of Ni⁰ (852.9 eV), the BE of Ni⁰ shifted negatively in catalysts, suggesting an electron transfer from TiO₂ to Ni.^{S1} The Ni $2p_{3/2}$ spectra of Ni/TiO₂-P catalyst shows more intensive peaks, indicating a better dispersion on the surface.^{S3} This is consistent with our conclusion that Ni/TiO₂-P catalyst possesses smaller Ni particle size and higher Ni dispersion.

Fig. S1 Ni 2p_{3/2} XPS spectra of Ni/TiO₂-P and Ni/TiO₂-C.

The dispersion of Ni nanoparticles (D_{Ni}) was estimated by assuming Ni nanoparticle as a sphere, following the equations: ^{S4}

$$D_{Ni} = \frac{n_s}{n} = \frac{4\pi \cdot R^2 \cdot a_m}{\frac{4\pi}{3} \cdot R^3 \cdot \rho_0}$$
$$\frac{M}{M} \cdot N_A$$
$$R = \frac{d}{2}$$

Where n_s is the number of Ni atoms on the surface of the sphere; *n* is the total number of Ni atoms in the sphere; d is the mean diameter of Ni nanoparticles obtained from XRD; a_m is the number of surface Ni atoms per unit m², which is 1.54×10^{19} m⁻² calculated for fcc Ni using the proportions of low index planes fcc (111): (100): (110) = 1: 1: 1;^{S4} ρ_0 is the density of Ni, 8.902×10^6 g·m⁻³; N_A is 6.02×10^{23} mol⁻¹; M is the atomic weight of Ni, 58.69 g·mol⁻¹.

Fig. S2 TG curve of TiO₂.

References

- [S1] W. Lin, H. Cheng, L. He, Y. Yu and F. Zhao, J. Catal., 2013, 303, 110-116.
- [S2] J. Wang, K. Chang, Z. Sun, J. H. Lee, B. M. Tackett, C. Zhang, J. G. Chen and C.-J. Liu, *Appl. Catal. B-Environ.*, 2019, 251, 162-167.
- [S3] N. Rui, X. Zhang, F. Zhang, Z. Liu, X. Cao, Z. Xie, R. Zou, S. D. Senanayake,
 Y. Yang, J. A. Rodriguez and C.-J. Liu, *Appl. Catal. B-Environ.*, 2021, 282, 119581.
- [S4] Y. Lin, Y. Zhu, X. Pan and X. Bao, *Catal. Sci. Technol.*, 2017, 7, 2813-2818.