Supplementary Information

Structural effect of Ni/TiO$_2$ on CO methanation: improved activity and enhanced stability

Jie Zhang, Xinyu Jia and Chang-jun Liu*

School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

* Corresponding author. Tel.: +86 22 27406490.

E-mail addresses: cjL@tju.edu.cn (C.-J. Liu).
Table S1 Textural properties of the TiO$_2$ support and the Ni/TiO$_2$ catalysts.

<table>
<thead>
<tr>
<th>Sample</th>
<th>S_{BET} (m2/g)</th>
<th>V_{pore} (cm3/g)</th>
<th>D_{pore} (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO$_2$</td>
<td>13.2</td>
<td>0.03</td>
<td>9.1</td>
</tr>
<tr>
<td>Ni/TiO$_2$-C</td>
<td>14.1</td>
<td>0.04</td>
<td>10.2</td>
</tr>
<tr>
<td>Ni/TiO$_2$-P</td>
<td>15.1</td>
<td>0.03</td>
<td>8.5</td>
</tr>
</tbody>
</table>
The Ni 2p_{3/2} spectra of the Ni/TiO₂ catalysts are shown in Fig. S1. The Ni species exists in both elemental state (Ni⁰) centered at 851.8 eV and oxidized state (Ni²⁺) centered at 855.0 eV, along with a satellite located at 860.4 eV.^{S1, S2} The oxidic Ni²⁺ can be assigned to NiO from the air exposure. Compared to the standard binding energy (BE) of Ni⁰ (852.9 eV), the BE of Ni⁰ shifted negatively in catalysts, suggesting an electron transfer from TiO₂ to Ni.^{S1} The Ni 2p_{3/2} spectra of Ni/TiO₂-P catalyst shows more intensive peaks, indicating a better dispersion on the surface.^{S3} This is consistent with our conclusion that Ni/TiO₂-P catalyst possesses smaller Ni particle size and higher Ni dispersion.

![Ni 2p_{3/2} XPS spectra of Ni/TiO₂-P and Ni/TiO₂-C.](image_url)

Fig. S1 Ni 2p_{3/2} XPS spectra of Ni/TiO₂-P and Ni/TiO₂-C.
The dispersion of Ni nanoparticles (D_{Ni}) was estimated by assuming Ni nanoparticle as a sphere, following the equations: \(^{54}\)

$$D_{Ni} = \frac{n_s}{n} = \frac{4\pi \cdot R^2 \cdot a_m}{\frac{4\pi}{3} \cdot R^3 \cdot \rho_0} = \frac{M \cdot N_A}{4\pi \cdot R^2 \cdot \rho_0} \\
R = \frac{d}{2}$$

Where n_s is the number of Ni atoms on the surface of the sphere; n is the total number of Ni atoms in the sphere; d is the mean diameter of Ni nanoparticles obtained from XRD; a_m is the number of surface Ni atoms per unit m\(^2\), which is 1.54×10^{19} m\(^2\) calculated for fcc Ni using the proportions of low index planes fcc (111): (100): (110) = 1: 1: 1; \(^{54}\) ρ_0 is the density of Ni, 8.902×10^6 g·m\(^{-3}\); N_A is 6.02×10^{23} mol\(^{-1}\); M is the atomic weight of Ni, 58.69 g·mol\(^{-1}\).
Fig. S2 TG curve of TiO$_2$.

References

