Photoinduced Successive Oxidative Ring-Opening and Borylation of Indolizines with NHC-Boranes

Guangdong Cosmetics Engineering \& Technology Research Center, School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China

Table of Contents:

1. General considerations S2
2. Experimental procedures and characterization data S3
2.1 Experimental procedures S3
2.2 Characterization data S5
3. NMR spectra for new compounds S16
4. X-ray crystallographic data S58
5. References S60

1. General considerations

Unless otherwise noted, commercial reagents were purchased from Adamas, Alfa Aesar, TCI, or Maclin and used without further purification. All reactions were carried out using oven-dried glassware and all catalytic reactions proceeded without special care. Column chromatography was performed on 200-300 mesh silica gel (Huanghai, China).
${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded on an Bruker Ascend 400 MHz spectrometer and Bruker Ultrashield 300 MHz at ambient temperature. ${ }^{1} \mathrm{H}$ NMR spectra are referred to the TMS signal ($\delta=0 \mathrm{ppm}$) and ${ }^{13} \mathrm{C}$ NMR spectra are referred to the residual solvent signal $(\delta=77.16 \mathrm{ppm})$. Data for ${ }^{1} \mathrm{H}$ NMR are reported as follows: chemical shifts ($\delta \mathrm{ppm}$), multiplicities $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad $)$, coupling constants (Hz), integration.

Photochemical reaction experiments were carried out on a PL-SX100A Model Multi-channel photochemical reaction instrument (the light source is 20 W blue LED, the working current is $0.5-1.7 \mathrm{~A}$, the input power is 120 W , the temperature is controlled by circulating water cooling, and the stirring speed is $0-1500 \mathrm{r} / \mathrm{min}$). The material of the irradiation vessel is borosilicate glass and it is 3 cm away from the light source. The data of HRMS was carried out on a waters G2-XS high-resolution mass spectrometer (HR-ESI-MS) or Agilent 7250 GC/QTOF.

Note: In the ${ }^{13} \mathrm{C}$ NMR spectral data, the carbons connected to boron are not listed due to quadrupole broadening and spin-spin coupling with boron.

2. Experimental procedures and characterization data

2.1 Experimental procedures

Synthesis of compounds 1 according to the following procedure ${ }^{1-2}$:

As exemplified for 1a:

A solution of 2-picoline ($0.93 \mathrm{~g}, 10 \mathrm{mmol}, 1.0$ equiv.) and 2 bromoacetophenone ($1.99 \mathrm{~g}, 10 \mathrm{mmol}, 1.0$ equiv.) in acetone (50 mL) were added to a 100 mL round bottom flask and heated with a heating mantle at $60^{\circ} \mathrm{C}$ for 5 hours. The precipitate obtained by filtration separation was redissolved in 20 mL of hot water $\left(60{ }^{\circ} \mathrm{C}\right)$. Then, $\mathrm{K}_{2} \mathrm{CO}_{3}\left(1.38 \mathrm{~g}, 10 \mathrm{mmol}, 1.0\right.$ equiv.) was added and heated at $60{ }^{\circ} \mathrm{C}$ for 5 hours. After filtration and drying in vacuo, a white solid compound was obtained in 50% overall yield ($0.965 \mathrm{~g}, 5 \mathrm{mmol}$) without further purification.

Synthesis of NHC-BH \mathbf{H}_{3} compounds 2 according to the following procedure ${ }^{3}$:

As exemplified for 2a:

To a mixture of 1-methylimidazole (50 mmol , 1.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added methyl iodide (60 mmol, 1.2 equiv.) dropwise over 15 min at $0^{\circ} \mathrm{C}$. The mixture was allowed to stir for 2 h at room temperature. The crude product was then obtained after removing the solvent, and directly used for next step without further purification. To a mixture of imidazolium salt ($40 \mathrm{mmol}, 1.0$ equiv) in toluene (40 mL) was added sodium borohydride ($48 \mathrm{mmol}, 1.2$ equiv). The flask was fitted with a cold water condenser and placed in an oil bath at $125-130^{\circ} \mathrm{C}$ for 24 h . The hot reaction solvent was cautiously decanted from the insoluble mixture, and the remaining residue was extracted with hot toluene ($20 \mathrm{~mL} \times 2$ times). The organic extracts were combined, concentrated, and further recrystallized over water to give the pure product as a fine white crystal $(3.7 \mathrm{~g})$.

Synthesis of products 3 and 4 according to the following procedure:

As exemplified for 3a:

A 25 mL sealed tube was charged with a stirring bar, and added 2-phenylindolizine (1a, $38.6 \mathrm{mg}, 0.2 \mathrm{mmol}$), NHC-borane (2a, $44 \mathrm{mg}, 0.4 \mathrm{mmol}), \mathrm{NaOAc}(32.8 \mathrm{mg}, 0.4 \mathrm{mmol})$, rose bengal ($10 \mathrm{mg}, 0.01 \mathrm{mmol}$), and $\mathrm{MeCN}(2.0 \mathrm{~mL})$. The reaction was irradiated with a 20 W blue LED at room temperature stirring for 12 h and monitored by TLC. The reaction mixture was then diluted with EtOAc and water, extracted with EtOAc. The organic layers were washed with brine and dried over MgSO_{4}, evaporated under reduced pressure. The crude mixture was purified by flash column chromatography on silica gel (eluted with petroleum ether : ethyl acetate $=1: 1$) to give $\mathbf{3 a}$ in 72% yield $(47.9 \mathrm{mg})$.

Scale-up reaction for 3a:

A 50 mL round bottom flask was charged with a stirring bar, and added 2-phenylindolizine (1a, 193mg, 1 mmol), NHC-borane ($\mathbf{2 a}, 220 \mathrm{mg}, 2 \mathrm{mmol}$), $\mathrm{NaOAc}(164 \mathrm{mg}, 2 \mathrm{mmol}$), rose bengal ($50 \mathrm{mg}, 0.05 \mathrm{mmol}$), and $\operatorname{MeCN}(10.0 \mathrm{~mL})$. The reaction was irradiated with a 20 W blue LED at room temperature stirring for 12 h and monitored by TLC. The reaction mixture was then diluted with EtOAc and water, extracted with EtOAc. The organic layers were washed with brine and dried over MgSO_{4}, evaporated under reduced pressure. The crude mixture was purified by flash column chromatography on silica gel (eluted with petroleum ether : ethyl acetate $=1: 1)$ to give $\mathbf{3 a}$ in 70% yield $(222.6 \mathrm{mg})$.

On/Off experiment

Standard reactions were set up parallel on a 0.20 mmol scale. After being irradiated for 2 h , an aliquot (150 $\mu \mathrm{L}$) from the reaction mixture was transferred into a nuclear magnetic tube charged with 0.5 mL of CDCl_{3}. The yield of product 3a was determined by ${ }^{1} \mathrm{H}$ NMR. Then the reaction mixture was stirred for 2 h with light-off. All of the following yields were analyzed in the identical way after a 2 h light on or off.

2.2 Characterization data

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)((2-phenyl-3-(pyridin-2-yl)acryloyl)oxy)dihydroborate (3a)

Flash column chromatography on silica gel (eluent: $\mathrm{PE} / \mathrm{EA}=1 / 1, \mathrm{v} / \mathrm{v}$) to afford 3a. Brown liquid (47.9 mg, 72\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.39(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.54(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.07-7.03$ $(\mathrm{m}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $172.2,155.0,149.1,141.9,137.2,136.2,128.6,128.3,126.5,125.2,123.1,121.8$, 120.8, 36.2. ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-13.51. IR (KBr): 3416, 3125, 2954, 1672, 1382, 1113, 778, $\mathrm{cm}-1$. HR-ESI-MS (m/z): calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{BN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 334.1722, found: 334.1728.
(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)((3-(3-methylpyridin-2-yl)-2-phenylacryloyl)oxy)dihydroborate (3b)

Flash column chromatography on silica gel (eluent: $\mathrm{PE} / \mathrm{EA}=1 / 1, \mathrm{v} / \mathrm{v}$) to afford 3b. Brown liquid ($48.6 \mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.64-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.25(\mathrm{~m}, 4 \mathrm{H}), 6.99-6.93(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~s}$, $2 \mathrm{H}), 3.79(\mathrm{~s}, 6 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 172.3, 153.2, 146.2, $142.4,137.9,137.5,131.4,128.4,128.1,126.8,122.2,121.7,120.6,36.1,19.0 .{ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-15.51(\mathrm{t}, J=134.7 \mathrm{~Hz})$. $\mathrm{IR}(\mathrm{KBr}): 3416,3121,2925,1671,1377,1113,764$, cm-1. HR-ESI-MS (m/z): calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{BN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 348.1877$, found: 348.1865.
(1,3-Dimethyl-1H-imidazol-3-ium-2-yl) (3-(4-methylpyridin-2-yl)-2-phenylacryloyl)oxy)dihydroborate (3c)

Flash column chromatography on silica gel (eluent: $\mathrm{PE} / \mathrm{EA}=1 / 1, \mathrm{v} / \mathrm{v}$) to afford $\mathbf{3 c}$. Red brown liquid (50.6 mg, 73\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.25$ (d, $J=5.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.57-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.90(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.85$ $(\mathrm{s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 172.1, 154.7, $148.7,147.1,141.5,137.3,128.5,128.1,126.4,125.3,124.0,122.8,120.8,36$. , 21.1. ${ }^{11} \mathrm{~B}$ NMR (128 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-17.23$. $\mathrm{IR}(\mathrm{KBr}): 3416,3163,2956,1671,1301,1113,699, \mathrm{~cm}-1$. HR-ESI-MS (m/z): calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{BN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 348.1877$, found: 348.1891.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)((3-(3,5-dimethylpyridin-2-yl)-2-phenylacryloyl)oxy)dihydrobor

 ate (3d)

Flash column chromatography on silica gel (eluent: $\mathrm{PE} / \mathrm{EA}=1 / 1, \mathrm{v} / \mathrm{v}$) to afford $\mathbf{3 d}$. Brown liquid (49.1 mg, 68\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.85$ $(\mathrm{s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $172.5,150.5,146.7,141.6,138.1,138.0,131.1,130.9,128.4,127.9,126.8,122.4$, $120.6,36.1,18.8,18.2 .{ }^{11} \mathrm{~B} \operatorname{NMR}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-14.84$. IR (KBr): 3409, 3158, 2958, 1694, 1401, 1082, 771, cm ${ }^{-1}$. HR-ESI-MS (m/z): calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{BN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 362.2034, found: 362.2025.
(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)((3-(3,5-dimethylpyridin-2-yl)-2-phenylacryloyl)oxy)dihydrobor ate (3e)

Flash column chromatography on silica gel (eluent: PE/EA $=1 / 1, \mathrm{v} / \mathrm{v}$) to afford $\mathbf{3 e}$. Brown liquid ($46.2 \mathrm{mg}, 64 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.28(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~s}, 2 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 3 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 2 \mathrm{H}), 3.74$ $(\mathrm{s}, 6 \mathrm{H}), 2.61(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.23(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 172.2,152.4,148.8,140.8,137.4,137.2,135.5,128.5,128.1,126.3$,
 1671, 1380, 1112, 759, cm-1. HR-ESI-MS (m/z): calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{BN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 362.2034$, found: 362.2041 .
(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)((3-(4-methoxypyridin-2-yl)-2-phenylacryloyl)oxy)dihydroborat -e (3f)

Flash column chromatography on silica gel (eluent: PE/EA $=1 / 1, \mathrm{v} / \mathrm{v}$) to afford 3f. Yellow brown liquid ($42.8 \mathrm{mg}, 59 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.24$ (d, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 2 \mathrm{H}), 6.65-6.61(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13}{ }^{13}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 172.0,165.9,156.6,150.1,141.9,137.1,128.5$, $128.3,126.5,125.4,120.9,109.00,108.1,55.3,36.1 .{ }^{11} \mathrm{~B}^{\mathrm{NMR}}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-13.89 . \mathrm{IR}(\mathrm{KBr}): 3323$,

3158, 2960, 1581, 1428, 1179, 777, cm-1. HR-ESI-MS (m/z): calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{BN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 364.1827$, found: 364.1823.

3-(3-Bromopyridin-2-yl)-2-phenylacryloyl)oxy)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)dihydroborate

 (3g)

Flash column chromatography on silica gel (eluent: $\mathrm{PE} / \mathrm{EA}=1 / 1, \mathrm{v} / \mathrm{v}$) to afford $\mathbf{3 g}$. Brown liquid ($46.0 \mathrm{mg}, 56 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.20(\mathrm{~d}, J=3.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.78(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{~s}$, $1 \mathrm{H}), 6.92(\mathrm{dd}, J=8.1,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.9,152.6,147.1,144.2,140.2,137.2,128.5,127.4,126.9,122.8,121.8$, 121.1, 120.7, 36.1. ${ }^{11} \mathrm{~B}$ NMR (128 MHz, CDCl_{3}) δ-14.72. IR (KBr): 3431, 3143, 2957, 1661, 1430, 1103, 781, $\mathrm{cm}-1$. HR-ESI-MS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{BBrN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 412.0827$, found: 412.0837 .

1,3-Dimethyl-1H-imidazol-3-ium-2-yl)((3-(pyridin-2-yl)-2-(p-tolyl)acryloyl)oxy)dihydroborate (3h)

Flash column chromatography on silica gel (eluent: $\mathrm{PE} / \mathrm{EA}=1 / 1, \mathrm{v} / \mathrm{v}$) to afford $\mathbf{3 h}$. Brown liquid (49.3 mg, 71\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.39(\mathrm{~d}, J=4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.07-$ $7.02(\mathrm{~m}, 1 \mathrm{H}), 6.91-6.82(\mathrm{~m}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 172.3,155.1,149.0,141.7,138.2,136.1,134.2,129.2,126.3,124.1$, $122.9,121.5,120.8,36.1,21.2 .{ }^{11} \mathrm{~B} \operatorname{NMR}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-14.37$. IR (KBr): 3416, 3121, 2925, 1671, 1301, 1180, 764, cm-1. HR-ESI-MS (m/z): calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{BN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 348.1877$, found: 348.1887.

1,3-Dimethyl-1H-imidazol-3-ium-2-yl)((2-(4-methoxyphenyl)-3-(pyridin-2-yl)acryloyl)oxy)dihydrobor-

 ate (3i)

Flash column chromatography on silica gel (eluent: PE/EA $=1 / 1, \mathrm{v} / \mathrm{v}$) to afford 3i. Brown liquid ($45.7 \mathrm{mg}, 63 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.37$ (d, $J=3.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.58-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=7.5,5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.87(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 172.3,159.8,155.1,148.9,141.3,136.1,129.6,127.7$,
123.1, 122.8, 121.4, 120.8, 113.9, 55.3, 36.0. ${ }^{11}$ B NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-13.65$. IR (KBr): 3223, 3158, 2960, 1581, 1317, 1179, 777, cm-1. HR-ESI-MS (m/z): calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{BN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 364.1827$, found: 364.1838.

1,3-Dimethyl-1H-imidazol-3-ium-2-yl)((2-(4-fluorophenyl)-3-(pyridin-2-yl)acryloyl)oxy)dihydroborate

 (3j)

Flash column chromatography on silica gel (eluent: PE/EA $=1 / 1, \mathrm{v} / \mathrm{v}$) to afford 3j. Brown liquid ($47.1 \mathrm{mg}, 67 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.38(\mathrm{~d}, J=3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.61-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.40(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-6.98(\mathrm{~m}, 3 \mathrm{H})$, $6.87(\mathrm{~s}, 2 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.9$, 164.0, 161.5, 154.7, 149.0, 140.7, 136.1, 133.3 (d, $J=3.3 \mathrm{~Hz}), 128.2(\mathrm{~d}, J=8.2$ $\mathrm{Hz}), 124.9,123.0,121.7,120.7,115.4(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 36.0 .{ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-14.55 . \mathrm{IR}$ (KBr): 3400, 3159, 2927, 1579, 1320, 1171, 777, cm-1. HR-ESI-MS (m/z): calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{BFN}_{3} \mathrm{O}_{2}[\mathrm{M}+$ $\mathrm{H}]^{+}: 352.1627$, found: 352.1638.

2-(4-Bromophenyl)-3-(pyridin-2-yl)acryloyl)oxy)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)dihydroborate

 (3k)

Flash column chromatography on silica gel (eluent: $\mathrm{PE} / \mathrm{EA}=1 / 1, \mathrm{v} / \mathrm{v}$) to afford 3k. Brown liquid ($57.5 \mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.38(\mathrm{~d}, J=$ $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.08(\mathrm{~d}, J=4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.87(\mathrm{~s}, 2 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ $171.6,154.5,149.0,140.6,136.2,136.1,131.6,128.0,125.4,123.2,122.3$, 121.9, 120.8, 36.0. ${ }^{11} \mathrm{~B}$ NMR (128 MHz, CDCl_{3}) δ-15.18. IR (KBr): 3431, 3143, 2925, 1661, 1315, 1179, 781, $\mathrm{cm}-1$. HR-ESI-MS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{BBrN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 412.0826$, found: 412.0837 .

2-(4-Cyanophenyl)-3-(pyridin-2-yl)acryloyl)oxy)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)dihydroborate

 (31)

Flash column chromatography on silica gel (eluent: $\mathrm{PE} / \mathrm{EA}=1 / 1, \mathrm{v} / \mathrm{v}$) to afford 31. Red brown liquid ($56.2 \mathrm{mg}, 73 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.38(\mathrm{~d}, \mathrm{~J}$
$=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.56(\mathrm{~m}, 5 \mathrm{H}), 7.41(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 2 \mathrm{H})$, $3.76(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.0,154.0,149.1,141.7,140.0,136.2,132.3,127.6,127.0$, 123.6, 122.3, 120.8, 118.8, 111.4, 36.0. ${ }^{11}$ B NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-14.33. IR (KBr): 3368, 3161, 2227, 1580, 1398, 1176, 923, 776, cm-1. HR-ESI-MS (m/z): calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{BN}_{4} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 381.1493$, found: 381.1495 .
(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)((3-(pyridin-2-yl)-2-(4-(trifluoromethyl)phenyl)acryloyl)oxy)dih -ydroborate (3m)

Flash column chromatography on silica gel (eluent: $\mathrm{PE} / \mathrm{EA}=1 / 1, \mathrm{v} / \mathrm{v}$) to afford 3m. Yellow brown liquid ($60.1 \mathrm{mg}, 75 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.39$ $(\mathrm{d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.42(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.4,154.2,149.0,140.7,140.4,136.2,129.9$ (q, $J=32.4 \mathrm{~Hz}), 126.9,126.7,125.4(\mathrm{q}, J=3.9 \mathrm{~Hz}), 123.4,122.1,120.8,36.0 .{ }^{11} \mathrm{~B} \operatorname{NMR}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ -13.99. IR (KBr): 3338, 3161, 2862, 1582, 1326, 1198, 777, cm-1. HR-ESI-MS (m/z): calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{BF}_{3} \mathrm{~N}_{3} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 424.1415$, found: 424.1410 .
(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)((2-(2-fluorophenyl)-3-(pyridin-2-yl)acryloyl)oxy)dihydroborate (3n)

Flash column chromatography on silica gel (eluent: $\mathrm{PE} / \mathrm{EA}=1 / 1$, v/v) to afford $3 n$. Brown liquid (51.2 mg, 73\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.47(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.62(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.07-6.96$ $(\mathrm{m}, 3 \mathrm{H}), 6.85(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.2,154.8$, $148.9,136.3,136.0,130.7(\mathrm{~d}, J=5.3 \mathrm{~Hz}), 130.2(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 129.6(\mathrm{~d}, J=8.6 \mathrm{~Hz})$, $124.2(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 123.6,122.0,120.6,115.9,115.7,36.0 .{ }^{11} \mathrm{~B} \mathrm{NMR}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-13.19 . \mathrm{IR}$ (KBr): 3400, 3111, 2857, 1579, 1427, 1171, 777, cm-1. HR-ESI-MS (m/z): calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{BFN}_{3} \mathrm{O}_{2}[\mathrm{M}+$ $\mathrm{H}]^{+}: 352.1627$, found: 352.1618 .
(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)((2-(3-methoxyphenyl)-3-(pyridin-2-yl)acryloyl)oxy)dihydroborate (30)

Flash column chromatography on silica gel (eluent: $\mathrm{PE} / \mathrm{EA}=1 / 1, \mathrm{v} / \mathrm{v}$) to afford $\mathbf{3 o}$. Brown liquid (47.2 mg, 65\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.42$ (d, $J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.58(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.17-7.03(\mathrm{~m}, 4 \mathrm{H}), 6.90-6.83(\mathrm{~m}, 4 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.9,159.6,154.8,149.0,141.7,136.1,129.4,125.3,123.0$, $121.7,120.7,120.7,119.1,114.2,111.6,55.3,36.0 .{ }^{11} \mathrm{~B} \mathrm{NMR}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta-13.81(\mathrm{~d}, J=79.0 \mathrm{~Hz}) . \operatorname{IR}(\mathrm{KBr}): 3223,3111,2960,1581,1248,1179,777, \mathrm{~cm}-1$. HR-ESI-MS (m/z): calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{BN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 364.1827$, found: 364.1839.
(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)((2-(3-fluorophenyl)-3-(pyridin-2-yl)acryloyl)oxy)dihydroborate (3p)

Flash column chromatography on silica gel (eluent: $\mathrm{PE} / \mathrm{EA}=1 / 1, \mathrm{v} / \mathrm{v}$) to afford $\mathbf{3 p}$. Brown liquid (46.3 mg, 66\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.41(\mathrm{~d}, J=5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.63-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J$ $=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.05(\mathrm{~m}, 1 \mathrm{H}), 7.02-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 2 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H})$, 3.77 ($\mathrm{s}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.6,164.0,161.6,154.4,149.1$, $140.5(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 139.4(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 136.2,129.9(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 125.9$, 123.2, 122.1(d, $J=2.8 \mathrm{~Hz}), 121.9,120.8,115.1,114.9,113.4,113.1,36.0 .{ }^{11} \mathrm{~B}$ NMR $\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ -14.10. IR (KBr): 3400, 3159, 2857, 1579, 1395, 1171, 777, cm-1. HR-ESI-MS (m/z): calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{BFN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 352.1627$, found: 352.1632.
((2-(3-chlorophenyl)-3-(pyridin-2-yl)acryloyl)oxy)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)dihydroborate (3q)

Flash column chromatography on silica gel (eluent: $\mathrm{PE} / \mathrm{EA}=1 / 1$, v/v) to afford
3q. Yellow brown liquid ($52.1 \mathrm{mg}, 71 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.42(\mathrm{~d}$, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{~d}, J=2.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.12-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 2 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.5,154.4,149.1,140.3,139.0,136.2,134.3,129.7$, 128.1, $126.4,126.1,124.6,123.2,122.0,120.8,36.1 .{ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-15.02. IR (KBr): 3413, 3050,

2925, 1661, 1381, 1179, 781, cm-1. HR-ESI-MS (m/z): calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{BClN}_{3} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 390.1151$, found: 390.1168.
((2-(3-Bromophenyl)-3-(pyridin-2-yl)acryloyl)oxy)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)dihydroborate(3r)

Flash column chromatography on silica gel (eluent: $\mathrm{PE} / \mathrm{EA}=1 / 1$, v/v) to afford $\mathbf{3 r}$. Yellow brown liquid $(60.0 \mathrm{mg}, 73 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.42(\mathrm{~d}, J=4.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.64-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{t}, J$ $=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 2 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.4,154.3,149.1,140.2,139.4,136.2,131.0,130.0,129.3$, 126.2, 125.0, 123.2, 122.5, 122.0, 120.8, 36.0. ${ }^{11} \mathrm{~B}$ NMR (128 MHz, CDCl_{3}) $\delta-13.83$. IR (KBr): 3431, 3143, 2957, 1661, 1381, 1103, 781, cm-1. HR-ESI-MS (m/z): calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{BBrN}_{3} \mathrm{O}_{2}[\mathrm{M}$ $+\mathrm{H}]^{+}: 412.0826$, found: 412.0825 .
((2-(3,4-Dichlorophenyl)-3-(pyridin-2-yl)acryloyl)oxy)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)dihydrobo -rate (3s)

Flash column chromatography on silica gel (eluent: PE/EA $=1 / 1, v / v$) to afford 3s. Brown liquid ($56.1 \mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.41(\mathrm{~d}, J=5.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.66-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{~s}$, $2 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.2,154.1$, $149.1,139.3,137.3,136.2,132.5,132.0,130.4,128.2,126.4,125.7,123.3,122.1$, 120.8, 36.1. ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-14.39. IR (KBr): 3119, 2956, 1672, 1473, 1112, 743, cm-1. HR-ESI-MS (m/z): calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{BCl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 402.0942, found: 402.0942 .
((2-(2,4-Dichlorophenyl)-3-(pyridin-2-yl)acryloyl)oxy)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)dihydrobo -rate (3t)

Flash column chromatography on silica gel (eluent: PE/EA $=1 / 1, \mathrm{v} / \mathrm{v}$) to afford 3t. Brown liquid ($57.7 \mathrm{mg}, 72 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.54-8.47$ (m, $1 \mathrm{H}), 7.67-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.24$
(dd, $J=8.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 2 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 169.7,154.4,148.9,138.1,137.2,135.8,134.2,134.0,133.7,132.0,129.3,127.1,124.0,122.3$, 120.7, 36.0. ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-13.92. $\mathrm{IR}(\mathrm{KBr}): 3162,2926,1672,1368,1112,776, \mathrm{~cm}-1$. HR-ESI-MS (m/z): calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{BCl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 402.0942$, found: 402.0941.
(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)((2-(4-fluorophenyl)-3-(3-methylpyridin-2-yl)acryloyl)oxy)dihyd -roborate (3u)

Flash column chromatography on silica gel (eluent: PE/EA $=1 / 1, \mathrm{v} / \mathrm{v}$) to afford 3u. Brown liquid ($45.2 \mathrm{mg}, 62 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02(\mathrm{~d}, J=3.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.61-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $6.95(\mathrm{dd}, J=7.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 2 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 172.1,163.9,161.5,153.0,146.1,141.3,137.5$, $134.1(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 131.4,128.5(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 122.1(\mathrm{~d}, J=1.7 \mathrm{~Hz}), 121.7,120.6,115.4,115.2,36.0$, 18.9. ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-15.27 . \mathrm{IR}(\mathrm{KBr}): 3382,3161,2927,1576,1397,1167,778, \mathrm{~cm}-1$. HR-ESI-MS $(\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{BFN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 366.1784$, found: 366.1779.
((2-(4-Chlorophenyl)-3-(3-methylpyridin-2-yl)acryloyl)oxy)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)dihy droborate (3v)

Flash column chromatography on silica gel (eluent: $\mathrm{PE} / \mathrm{EA}=1 / 1, \mathrm{v} / \mathrm{v}$) to afford 3v. Red brown liquid ($48.7 \mathrm{mg}, 64 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03(\mathrm{~d}, J=$ $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.29(\mathrm{~m}$, $2 \mathrm{H}), 7.00-6.92(\mathrm{~m}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.9,152.9,146.1,141.2,137.5,136.4,133.9$, $131.5,128.5,128.1,122.6,121.9,120.6,36 ., 18.9 .{ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-15.46 . \mathrm{IR}(\mathrm{KBr}): 3400$, 3120, 2956, 1671, 1376, 1113, 831, cm-1. HR-ESI-MS (m/z): calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{BClN}_{3} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 404.1308, found: 404.1303.
((2-(3-Chlorophenyl)-3-(4-methylpyridin-2-yl)acryloyl)oxy)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)dihy droborate (3w)

Flash column chromatography on silica gel (eluent: PE/EA $=1 / 1, \mathrm{v} / \mathrm{v}$) to afford 3w. Brown solid (52.5mg, 69\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.25(\mathrm{~d}$, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.25(\mathrm{~m}, 3 \mathrm{H}), 6.91(\mathrm{~d}, J=5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.87(\mathrm{~s}, 2 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.5,154.1,148.8,147.2,140.0,139.1,134.2,129.7,128.0,126.4$, 126.3, 124.5, 124.2, 123.1, 120.8, 36.0, 21.0. ${ }^{11}$ B NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-13.72$. IR (KBr): 3400, 3120, 2926, 1671, 1299, 1113, 800, cm-1. HR-ESI-MS (m/z): calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{BClN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 382.1488$, found: 382.1492 .
((2-(3-Bromophenyl)-3-(4-methoxypyridin-2-yl)acryloyl)oxy)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)dih -ydroborate (3x)

Flash column chromatography on silica gel (eluent: $\mathrm{PE} / \mathrm{EA}=1 / 1, \mathrm{v} / \mathrm{v}$) to afford 3x. Brown liquid ($52.0 \mathrm{mg}, 59 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.25$ $(\mathrm{d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 2 \mathrm{H})$, $6.84(\mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.4,165.9,156.0,150.1,140.3,139.2,131.0,130.0,129.3,126.5,125.0,122.5,120.8$, 109.2, 108.3, 55.2, 36.0. ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-14.43. IR (KBr): 3423, 3124, 2956, 1671, 1309, 1112, 786, cm-1. HR-ESI-MS (m/z): calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{BBrN}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 442.0932$, found: 442.0940 .
((2-(3,4-Dichlorophenyl)-3-(3-methylpyridin-2-yl)acryloyl)oxy)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)di hydroborate (3y)

Flash column chromatography on silica gel (eluent: PE/EA $=1 / 1, \mathrm{v} / \mathrm{v}$) to afford 3y. Brown liquid ($52.3 \mathrm{mg}, 63 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07$ (d, $J=4.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.02-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.91$ $(\mathrm{s}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 6 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ $171.4,152.5,146.2,140.0,138.1,137.6,132.4,131.8,131.7,130.3,128.5,126.2$, 123.7, 122.1, 120.7, 36.1, 18.9. ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-14.38. IR (KBr): 3400, 3163, 2956, 1671, 1376, 1113, 775, cm-1. HR-ESI-MS (m/z): calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{BCl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 416.1098, found: 416.1113.
(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)((3-(3,5-dimethylpyridin-2-yl)-2-(4-fluorophenyl)acryloyl)oxy)di hydroborate (3z)

Flash column chromatography on silica gel (eluent: PE/EA $=1 / 1, \mathrm{v} / \mathrm{v}$) to afford 3z. Brown liquid (50.8mg, 67\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88(\mathrm{~d}$, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=8.6 \mathrm{~Hz}$, 2H), $6.87(\mathrm{~s}, 2 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 172.3,163.8,161.4,150.3,146.6,140.4,138.1$, $134.2(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 131.2,130.8,128.4(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 122.3,120.6,115.4,115.1 .{ }^{11} \mathrm{~B} \mathrm{NMR}(128 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$-15.09. IR (KBr): 3388, 3165, 2926, 1671, 1380, 1231, 841, cm-1. HR-ESI-MS (m/z): calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{BFN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 380.1940$, found: 380.1938 .

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl)((2-(naphthalen-2-yl)-3-(pyridin-2-yl)acryloyl)oxy)dihydroborat -e (3aa)

Flash column chromatography on silica gel (eluent: PE/EA $=1 / 1, \mathrm{v} / \mathrm{v}$) to afford 3aa. Brown liquid ($53.6 \mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.44$ (d, $J=4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.94-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.84-7.76(\mathrm{~m}, 3 \mathrm{H}), 7.74(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60$ $(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.04(\mathrm{~m}$, 1H), 7.03 (s, 1H), $6.86(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.1$, $154.89,149.1,141.6,136.2,134.3,133.3,133.1,128.4,128.1,127.5,126.3-$ 126.0 (m), 125.4, 123.9, 123.1, 121.7, 120.7, 36.1. ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-14.20 . \mathrm{IR}(\mathrm{KBr}): 3417$, 3160, 2923, 1581, 1381, 1175, 756, cm-1. HR-ESI-MS (m/z): calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{BN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 384.1878$, found: 384.1870 .
(1-Isopropyl-3-methyl-1H-imidazol-3-ium-2-yl)((2-phenyl-3-(pyridin-2-yl)acryloyl)oxy)dihydroborate (4a)

Flash column chromatography on silica gel (eluent: PE/EA = 1/1, v/v) to afford $\mathbf{4 a}$. Brown liquid (52.7mg, 73\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.45(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.50(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.11-$ $7.03(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 5.22-5.06(\mathrm{~m}$,
$1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.9,154.8,149.1,141.8,137.0$, 136.1, $128.4,128.2,126.4,125.2,122.8,121.7,121.3,115.4,50.0,35.9,23.02 .{ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-15.17. IR (KBr): 3457, 2925, 1672, 1378, 1109, 778, cm-1. HR-ESI-MS (m/z): calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{BN}_{3} \mathrm{O}_{2}[\mathrm{M}$ $+\mathrm{H}]^{+}: 362.2034$, found: 362.2030.

3. NMR spectra for new compounds

${ }^{11} \mathrm{~B}$ NMR spectrum of compound $\mathbf{3 a}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 b}$

${ }^{11}$ B NMR spectrum of compound $\mathbf{3 b}$

$$
\begin{gathered}
\stackrel{0}{ल} \\
\stackrel{0}{\Gamma} \\
i
\end{gathered}
$$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 c}$

${ }^{11}$ B NMR spectrum of compound $3 \mathbf{c}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 d}$

${ }^{11} \mathrm{~B}$ NMR spectrum of compound $\mathbf{3 d}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 e}$

$\stackrel{\leftarrow}{\stackrel{\sim}{N}} \stackrel{-}{\leftarrow}$

$$
\begin{aligned}
& \text { 숟 }
\end{aligned}
$$

${ }^{11} \mathrm{~B}$ NMR spectrum of compound $\mathbf{3 e}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 f}$

${ }^{11}$ B NMR spectrum of compound $\mathbf{3 f}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 g}$

N

${ }^{11} \mathrm{~B}$ NMR spectrum of compound $\mathbf{3 g}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 h}$
$\underbrace{\text { O．}}$

${ }^{11} \mathrm{~B}$ NMR spectrum of compound $\mathbf{3 h}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 i}$

${ }^{11}$ B NMR spectrum of compound $\mathbf{3 i}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 j}$

${ }^{11}$ B NMR spectrum of compound $\mathbf{3 j}$
60
$\stackrel{0}{7}$
\vdots
1

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 k}$

[^0]

${ }^{11}$ B NMR spectrum of compound $\mathbf{3 k}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound 31

${ }^{11} \mathrm{~B}$ NMR spectrum of compound 31

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 m}$

${ }^{11}$ B NMR spectrum of compound $\mathbf{3 m}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 n}$

${ }^{11} \mathrm{~B}$ NMR spectrum of compound $\mathbf{3 n}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound 30

${ }^{11}$ B NMR spectrum of compound $3 \mathbf{3}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 p}$

${ }^{11} \mathrm{~B}$ NMR spectrum of compound $\mathbf{3 p}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 q}$

 둗 $\dot{\sim}$
$\stackrel{\circ}{\circ}$

[^1]${ }^{11}$ B NMR spectrum of compound $\mathbf{3 q}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 r}$

${ }^{11} \mathrm{~B}$ NMR spectrum of compound $\mathbf{3 r}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound 3 s

${ }^{11}$ B NMR spectrum of compound 3 s

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 t}$

${ }^{11} \mathrm{~B}$ NMR spectrum of compound $\mathbf{3 t}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 u}$

${ }^{11} \mathrm{~B}$ NMR spectrum of compound $\mathbf{3 u}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 v}$

${ }^{11} \mathrm{~B}$ NMR spectrum of compound $\mathbf{3 v}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 w}$

${ }^{11}$ B NMR spectrum of compound $\mathbf{3 w}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 x}$

| |||||l| \square

No

${ }^{11} \mathrm{~B}$ NMR spectrum of compound $\mathbf{3 x}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 y}$

${ }^{11}$ B NMR spectrum of compound $\mathbf{3 y}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 z}$

${ }^{11} \mathrm{~B}$ NMR spectrum of compound $\mathbf{3 z}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound 3aa

${ }^{11} \mathrm{~B}$ NMR spectrum of compound 3aa

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 a}$

$\stackrel{\circ}{\sim}$ $\underbrace{\infty} \boldsymbol{\infty}$

${ }^{11} \mathrm{~B}$ NMR spectrum of compound $\mathbf{4 a}$
$\stackrel{\stackrel{\rightharpoonup}{6}}{\stackrel{1}{1}}$

4. X-ray crystallographic data

Figure S1 X-ray single crystal structure of 3w

Single crystals of $\mathbf{3 w}$ were grown by slow evaporation of its DCM/PE solution. Single-crystal X-ray diffraction data were collected with a 'multiwire proportional' diffractometer. The crystal was kept at 149.99 K during data collection. Using Olex2, the structure was solved with the olex2.solve structure solution program using Charge Flipping and refined with the olex2.refine refinement package using Least Squares minimization. Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Center (CCDC 2116778).

Table S1 Crystal data and structure refinement for 3w
Identification code
Empirical formula
2-477

Formula weight
$\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{BClN}_{3} \mathrm{O}_{2}$

Temperature/K
Crystal system
381.66

Space group
149.99(10)
a/Å
monoclinic
a/A
13.0381(3)
b/Å
20.5925(7)
c/Å
7.15692(19)
$\alpha /{ }^{\circ}$
90
$\beta /{ }^{\circ} \quad 91.598(3)$
$\gamma /{ }^{\circ}$
Volume/ ${ }^{3}{ }^{3}$
90

Z
1920.80(10)

4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
1.320
μ / mm^{-1}
1.920

F(000)
Crystal size/mm ${ }^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [$\gg=2 \sigma(\mathrm{I})$]
Final R indexes [all data]
Largest diff. peak/hole / e Å-3
Flack parameter

Table S2 Bond Lengths for 3w

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Cl1	C12	$1.744(3)$	C 9	C 20	$1.399(4)$
O1	C 8	$1.216(3)$	N 2	C 18	$1.456(4)$
O2	C 8	$1.309(3)$	N 3	C 14	$1.352(3)$
O 2	B 1	$1.526(4)$	N 3	C 16	$1.379(4)$
N 1	C 1	$1.351(4)$	N 3	C 17	$1.457(4)$
N 1	C 5	$1.335(4)$	C 1	C 2	$1.381(4)$
N 2	C 14	$1.343(3)$	C 1	C 6	$1.476(3)$
N 2	C 15	$1.374(4)$	C 2	C 3	$1.397(4)$
C 3	C 4	$1.377(5)$	C 10	C 11	$1.386(5)$
C 3	C 19	$1.495(4)$	C 11	C 12	$1.381(4)$
C 4	C 5	$1.389(5)$	C 12	C 13	$1.389(4)$
C6	C 7	$1.339(4)$	C 13	C 20	$1.398(4)$
C7	C 8	$1.514(4)$	C 14	B 1	$1.622(4)$
C7	C 20	$1.482(3)$	C 15	C 16	$1.343(5)$
C9	C 10	$1.398(4)$			

Table S3 Bond Angles for 3w

Atom	Atom	Atom	Angle $/^{\circ}$	Atom	Atom	Atom	${\text { Angle } /{ }^{\circ}}^{\text {C8 }}$
O 2	B 1	$118.5(2)$	C 20	C 7	C 8	$114.7(2)$	
C 5	N 1	C 1	$116.2(3)$	O 1	C 8	O 2	$125.6(2)$
C 14	N 2	C 15	$111.0(2)$	O 1	C 8	C 7	$120.9(2)$
C 14	N 2	C 18	$124.4(2)$	O 2	C 8	C 7	$113.3(2)$
C 15	N 2	C 18	$124.5(3)$	C 10	C 9	C 20	$120.0(3)$
C 14	N 3	C 16	$110.2(2)$	C 11	C 10	C 9	$120.9(3)$

C 14	N 3	C 17	$125.9(2)$	C 12	C 11	C 10	$118.4(3)$
C 16	N 3	C 17	$123.9(2)$	C 11	C 12	C 11	$120.1(2)$
N 1	C 1	C 2	$123.0(3)$	C 11	C 12	C 13	$122.2(3)$
N 11	C 1	C 6	$117.2(3)$	C 13	C 12	C 11	$117.7(2)$
C 2	C 1	C 6	$119.7(3)$	C 12	C 13	C 20	$119.4(3)$
C 1	C 2	C 3	$120.2(3)$	N 2	C 14	N 3	$105.2(2)$
C 2	C 3	C 19	$122.3(3)$	N 2	C 14	B 1	$126.1(2)$
C 4	C 3	C 2	$116.6(3)$	N 3	C 14	B 1	$128.7(2)$
C 4	C 3	C 19	$121.2(3)$	C 16	C 15	N 2	$106.6(3)$
C 3	C 4	C 5	$119.9(3)$	C 15	C 16	N 3	$107.1(2)$
N 13	C 5	C 4	$123.9(3)$	C 9	C 20	C 7	$121.6(2)$
C 7	C 6	C 1	$125.3(2)$	C 13	C 20	C 7	$119.3(2)$
C 6	C 7	C 8	$122.5(2)$	C 13	C 20	C 9	$119.1(2)$
C 6	C 7	C 20	$122.4(2)$	O 2	B 1	C 14	$110.2(2)$

5. References

1. H. Cao, H. Zhan, Y. Lin, X. Lin, Z. Du, H. Jiang, Org. Lett. 2012, 14, 1688-1691.
2. H. Zhan, L. Zhao, N. Li, L. Chen, J. Liu, J. Liao, H. Cao, RSC Adv. 2014, 4, 32013-32016.
3. S. Gardner, T. Kawamoto, Dennis P. Curran, J. Org. Chem. 2015, 80, 9794-9797

[^0]:

 \circ
 $\stackrel{\circ}{\circ}$

[^1]:

