Supporting Information

Photoinduced Successive Oxidative Ring-Opening and Borylation of Indolizines with NHC-Boranes

Guangdong Cosmetics Engineering & Technology Research Center, School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China

1. General considerationsS22. Experimental procedures and characterization dataS32.1 Experimental proceduresS32.2 Characterization dataS53. NMR spectra for new compoundsS164. X-ray crystallographic dataS585. ReferencesS60

Table of Contents:

1. General considerations

Unless otherwise noted, commercial reagents were purchased from Adamas, Alfa Aesar, TCI, or Maclin and used without further purification. All reactions were carried out using oven-dried glassware and all catalytic reactions proceeded without special care. Column chromatography was performed on 200-300 mesh silica gel (Huanghai, China).

¹H, ¹⁹F and ¹³C{¹H} NMR spectra were recorded on an Bruker Ascend 400MHz spectrometer and Bruker Ultrashield 300MHz at ambient temperature. ¹H NMR spectra are referred to the TMS signal ($\delta = 0$ ppm) and ¹³C NMR spectra are referred to the residual solvent signal ($\delta = 77.16$ ppm). Data for ¹H NMR are reported as follows: chemical shifts (δ ppm), multiplicities (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constants (Hz), integration.

Photochemical reaction experiments were carried out on a PL-SX100A Model Multi-channel photochemical reaction instrument (the light source is 20 W blue LED, the working current is 0.5-1.7 A, the input power is 120 W, the temperature is controlled by circulating water cooling, and the stirring speed is 0-1500 r/min). The material of the irradiation vessel is borosilicate glass and it is 3 cm away from the light source. The data of HRMS was carried out on a waters G2-XS high-resolution mass spectrometer (HR-ESI-MS) or Agilent 7250 GC/QTOF.

Note: In the ¹³C NMR spectral data, the carbons connected to boron are not listed due to quadrupole broadening and spin–spin coupling with boron.

2. Experimental procedures and characterization data

2.1 Experimental procedures

Synthesis of compounds 1 according to the following procedure¹⁻²:

As exemplified for 1a:

A solution of 2-picoline (0.93 g, 10 mmol, 1.0 equiv.) and 2 bromoacetophenone (1.99 g, 10 mmol, 1.0 equiv.) in acetone (50 mL) were added to a 100 mL round bottom flask and heated with a heating mantle at 60 °C for 5 hours. The precipitate obtained by filtration separation was redissolved in 20 mL of hot water (60 °C). Then, K_2CO_3 (1.38 g, 10 mmol, 1.0 equiv.) was added and heated at 60 °C for 5 hours. After filtration and drying in vacuo, a white solid compound was obtained in 50% overall yield (0.965 g, 5 mmol) without further purification.

Synthesis of NHC-BH₃ compounds 2 according to the following procedure³:

As exemplified for 2a:

To a mixture of 1-methylimidazole (50 mmol, 1.0 equiv.) in CH_2Cl_2 (10 mL) was added methyl iodide (60 mmol, 1.2 equiv.) dropwise over 15 min at 0 °C. The mixture was allowed to stir for 2 h at room temperature. The crude product was then obtained after removing the solvent, and directly used for next step without further purification. To a mixture of imidazolium salt (40 mmol, 1.0 equiv) in toluene (40 mL) was added sodium borohydride (48 mmol, 1.2 equiv). The flask was fitted with a cold water condenser and placed in an oil bath at 125-130 °C for 24 h. The hot reaction solvent was cautiously decanted from the insoluble mixture, and the remaining residue was extracted with hot toluene (20 mL \times 2 times). The organic extracts were combined, concentrated, and further recrystallized over water to give the pure product as a fine white crystal (3.7 g).

Synthesis of products 3 and 4 according to the following procedure:

As exemplified for 3a:

A 25 mL sealed tube was charged with a stirring bar, and added 2-phenylindolizine (**1a**, 38.6 mg, 0.2 mmol), NHC-borane (**2a**, 44 mg, 0.4 mmol), NaOAc(32.8mg, 0.4 mmol), rose bengal (10 mg, 0.01mmol), and MeCN (2.0 mL). The reaction was irradiated with a 20W blue LED at room temperature stirring for 12 h and monitored by TLC. The reaction mixture was then diluted with EtOAc and water, extracted with EtOAc. The organic layers were washed with brine and dried over MgSO₄, evaporated under reduced pressure. The crude mixture was purified by flash column chromatography on silica gel (eluted with petroleum ether : ethyl acetate = 1 : 1) to give **3a** in 72% yield (47.9 mg).

Scale-up reaction for 3a:

A 50 mL round bottom flask was charged with a stirring bar, and added 2-phenylindolizine (**1a**, 193mg, 1 mmol), NHC-borane (**2a**, 220 mg, 2 mmol), NaOAc (164 mg, 2 mmol), rose bengal (50 mg, 0.05 mmol), and MeCN (10.0 mL). The reaction was irradiated with a 20W blue LED at room temperature stirring for 12 h and monitored by TLC. The reaction mixture was then diluted with EtOAc and water, extracted with EtOAc. The organic layers were washed with brine and dried over MgSO₄, evaporated under reduced pressure. The crude mixture was purified by flash column chromatography on silica gel (eluted with petroleum ether : ethyl acetate = 1 : 1) to give **3a** in 70% yield (222.6 mg).

On/Off experiment

Standard reactions were set up parallel on a 0.20 mmol scale. After being irradiated for 2 h, an aliquot (150 μ L) from the reaction mixture was transferred into a nuclear magnetic tube charged with 0.5 mL of CDCl₃. The yield of product **3a** was determined by ¹H NMR. Then the reaction mixture was stirred for 2 h with light-off. All of the following yields were analyzed in the identical way after a 2 h light on or off.

2.2 Characterization data

(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)((2-phenyl-3-(pyridin-2-yl)acryloyl)oxy)dihydroborate (3a)

Flash column chromatography on silica gel (eluent: PE/EA = 1/1, v/v) to afford **3a**. Brown liquid (47.9 mg, 72%). ¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, *J* = 3.9 Hz, 1H), 7.54 (d, J = 8.3 Hz, 3H), 7.43 (d, J = 8.0 Hz, 1H), 7.33 – 7.27 (m, 3H), 7.07 – 7.03 (m, 1H), 6.87 (s, 1H), 6.85 (s, 2H), 3.74 (s, 6H). 13 C NMR (100 MHz, CDCl₃) δ 172.2, 155.0, 149.1, 141.9, 137.2, 136.2, 128.6, 128.3, 126.5, 125.2, 123.1, 121.8,

120.8, 36.2. ¹¹B NMR (128 MHz, CDCl₃) δ -13.51. IR (KBr): 3416, 3125, 2954, 1672, 1382, 1113, 778, cm-1. HR-ESI-MS (m/z): calcd for C₁₉H₂₁BN₃O₂ [M + H]⁺: 334.1722, found: 334.1728.

(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)((3-(3-methylpyridin-2-yl)-2-phenylacryloyl)oxy)dihydroborate (**3b**)

Flash column chromatography on silica gel (eluent: PE/EA = 1/1, v/v) to afford **3b**. Brown liquid (48.6 mg, 70%). ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 3.1 Hz, 1H), 7.64 - 7.54 (m, 2H), 7.41 - 7.25 (m, 4H), 6.99 - 6.93 (m, 1H), 6.92 (s, 1H), 6.86 (s, 2H), 3.79 (s, 6H), 2.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 153.2, 146.2, 142.4, 137.9, 137.5, 131.4, 128.4, 128.1, 126.8, 122.2, 121.7, 120.6, 36.1, 19.0. ¹¹B NMR (128 MHz, CDCl₃) δ -15.51 (t, J = 134.7 Hz). IR (KBr): 3416, 3121, 2925, 1671, 1377, 1113, 764,

cm-1. HR-ESI-MS (m/z): calcd for $C_{20}H_{23}BN_3O_2$ [M + H]⁺: 348.1877, found: 348.1865.

(1,3-Dimethyl-1H-imidazol-3-ium-2-yl) (3-(4-methylpyridin-2-yl)-2-phenylacryloyl)oxy)dihydroborate

(**3c**)

Flash column chromatography on silica gel (eluent: PE/EA = 1/1, v/v) to afford **3c**. Red brown liquid (50.6 mg, 73%). ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, J = 5.0 Hz, 1H), 7.57 – 7.50 (m, 2H), 7.37 – 7.27 (m, 5H), 6.90 (d, J = 4.5 Hz, 1H), 6.85 (s, 2H), 3.75 (s, 6H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.1, 154.7, 148.7, 147.1, 141.5, 137.3, 128.5, 128.1, 126.4, 125.3, 124.0, 122.8, 120.8, 36.,

21.1. ¹¹B NMR (128 MHz, CDCl₃) δ -17.23. IR (KBr): 3416, 3163, 2956, 1671, 1301, 1113, 699, cm-1. HR-ESI-MS (m/z): calcd for C₂₀H₂₃BN₃O₂ [M + H]⁺: 348.1877, found: 348.1891.

(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)((3-(3,5-dimethylpyridin-2-yl)-2-phenylacryloyl)oxy)dihydrobor ate (3d)

Flash column chromatography on silica gel (eluent: PE/EA = 1/1, v/v) to afford **3d**. Brown liquid (49.1 mg, 68%). ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 2.1 Hz, 1H), 7.55 (d, *J* = 7.0 Hz, 2H), 7.35 – 7.28 (m, 3H), 7.19 (s, 1H), 6.89 (s, 1H), 6.85 (s, 2H), 3.77 (s, 6H), 2.33 (s, 3H), 2.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 150.5, 146.7, 141.6, 138.1, 138.0, 131.1, 130.9, 128.4, 127.9, 126.8, 122.4,

120.6, 36.1, 18.8, 18.2. ¹¹B NMR (128 MHz, CDCl₃) δ -14.84. IR (KBr): 3409, 3158, 2958, 1694, 1401, 1082, 771, cm–1. HR-ESI-MS (m/z): calcd for C₂₁H₂₅BN₃O₂ [M + H]⁺: 362.2034, found: 362.2025.

(1, 3-Dimethyl - 1 H-imidazol - 3-ium - 2-yl) ((3-(3, 5-dimethyl pyridin - 2-yl) - 2-phenyla cryloyl) oxy) dihydrobor (1, 3-Dimethyl - 1 H-imidazol - 3-ium - 2-yl) ((3-(3, 5-dimethyl pyridin - 2-yl) - 2-phenyla cryloyl) oxy) dihydrobor (1, 3-Dimethyl - 1 H-imidazol - 3-ium - 2-yl) ((3-(3, 5-dimethyl pyridin - 2-yl) - 2-phenyla cryloyl) oxy) dihydrobor (1, 3-Dimethyl - 1 H-imidazol - 3-ium - 2-yl) ((3-(3, 5-dimethyl pyridin - 2-yl) - 2-phenyla cryloyl) oxy) dihydrobor (1, 3-Dimethyl - 1 H-imidazol - 3-ium - 2-yl) ((3-(3, 5-dimethyl pyridin - 2-yl) - 2-phenyla cryloyl) oxy) dihydrobor (1, 3-(3, 5-dimethyl pyridin - 2-yl) - 2-phenyla cryloyl) oxy) dihydrobor (1, 3-(3, 5-dimethyl pyridin - 2-yl) - 2-phenyla cryloyl) oxy) dihydrobor (1, 3-(3, 5-dimethyl pyridin - 2-yl) - 2-phenyla cryloyl) oxy) dihydrobor (1, 3-(3, 5-dimethyl pyridin - 2-yl) - 2-phenyla cryloyl) oxy) dihydrobor (1, 3-(3, 5-dimethyl pyridin - 2-yl) - 2-phenyla cryloyl) oxy) dihydrobor (1, 3-(3, 5-dimethyl pyridin - 2-yl) - 2-phenyla cryloyl) oxy) dihydrobor (1, 3-(3, 5-dimethyl pyridin - 2-yl) - 2-phenyla cryloyl) oxy) dihydrobor (1, 3-(3, 5-dimethyl pyridin - 2-yl) - 2-phenyla cryloyl) oxy) dihydrobor (1, 3-(3, 5-dimethyl pyridin - 2-yl) - 2-phenyla cryloyl) oxy) dihydrobor (1, 3-(3, 5-dimethyl pyridin - 2-yl) - 2-phenyla cryloyl) oxy) dihydrobor (1, 3-(3, 5-dimethyl pyridin - 2-yl) - 2-phenyla cryloyl) oxy) dihydrobor (1, 3-(3, 5-dimethyl pyridin - 2-yl) - 2-phenyla cryloyl) oxy) dihydrobor (1, 3-(3, 5-dimethyl pyridin - 2-yl) oxy) dihydrobor (1, 3-(3, 5-dimethyl pyridin - 2-yl) - 2-phenyla cryloyl) oxy) dihydrobor (1, 3-(3, 5-dimethyl pyridin - 2-yl) oxy) dihydrobor (1, 3-(3-yl) ox

ate (3e)

Flash column chromatography on silica gel (eluent: PE/EA = 1/1, v/v) to afford **3e**. Brown liquid (46.2 mg, 64%). ¹H NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 7.53 (d, J = 7.3 Hz, 2H), 7.39 (s, 2H), 7.36 – 7.27 (m, 3H), 6.87 (s, 1H), 6.85 (s, 2H), 3.74 (s, 6H), 2.61 (q, J = 7.6 Hz, 2H), 1.23 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 152.4, 148.8, 140.8, 137.4, 137.2, 135.5, 128.5, 128.1, 126.3,

125.2, 122.6, 120.8, 36.0, 25.9, 15.4. ¹¹B NMR (128 MHz, CDCl₃) δ -13.76. IR (KBr): 3393, 3117, 2965, 1671, 1380, 1112, 759, cm–1. HR-ESI-MS (m/z): calcd for C₂₁H₂₅BN₃O₂ [M + H]⁺: 362.2034, found: 362.2041.

(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)((3-(4-methoxypyridin-2-yl)-2-phenylacryloyl)oxy)dihydroborat -e (3f)

Flash column chromatography on silica gel (eluent: PE/EA = 1/1, v/v) to afford **3f**. Yellow brown liquid (42.8 mg, 59%). ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, J = 5.7 Hz, 1H), 7.57 – 7.49 (m, 2H), 7.37 – 7.26 (m, 3H), 7.11 (d, J = 2.4 Hz, 1H), 6.86 (s, 1H), 6.85 (s, 2H), 6.65 – 6.61 (m, 1H), 3.87 (s, 3H), 3.74 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 165.9, 156.6, 150.1, 141.9, 137.1, 128.5,

128.3, 126.5, 125.4, 120.9, 109.00, 108.1, 55.3, 36.1. ¹¹B NMR (128 MHz, CDCl₃) δ -13.89. IR (KBr): 3323,

3158, 2960, 1581, 1428, 1179, 777, cm-1. HR-ESI-MS (m/z): calcd for C₂₀H₂₃BN₃O₃ [M + H]⁺: 364.1827, found: 364.1823.

3-(3-Bromopyridin-2-yl)-2-phenylacryloyl)oxy)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)dihydroborate (**3g**)

Flash column chromatography on silica gel (eluent: PE/EA = 1/1, v/v) to afford 3g. Brown liquid (46.0 mg, 56%). ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 3.1 Hz, 1H), 7.78 (d, J = 6.5 Hz, 1H), 7.59 (d, J = 6.4 Hz, 2H), 7.37 – 7.29 (m, 3H), 7.20 (s, 1H), 6.92 (dd, J = 8.1, 4.6 Hz, 1H), 6.86 (s, 2H), 3.79 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) § 171.9, 152.6, 147.1, 144.2, 140.2, 137.2, 128.5, 127.4, 126.9, 122.8, 121.8, 121.1, 120.7, 36.1. ¹¹B NMR (128 MHz, CDCl₃) δ -14.72. IR (KBr): 3431, 3143, 2957, 1661, 1430, 1103,

781, cm–1. HR-ESI-MS (m/z): calcd for $C_{19}H_{20}BBrN_3O_2$ [M + H]⁺: 412.0827, found: 412.0837.

1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)((3-(pyridin-2-yl)-2-(p-tolyl)acryloyl)oxy)dihydroborate (3h)

Flash column chromatography on silica gel (eluent: PE/EA = 1/1, v/v) to afford **3h**. Brown liquid (49.3 mg, 71%). ¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, J = 4.9 Hz, 1H), 7.57 – 7.53 (m, 1H), 7.46 – 7.41 (m, 3H), 7.14 (d, J = 7.9 Hz, 2H), 7.07 – 7.02 (m, 1H), 6.91 – 6.82 (m, 3H), 3.74 (s, 6H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) § 172.3, 155.1, 149.0, 141.7, 138.2, 136.1, 134.2, 129.2, 126.3, 124.1,

122.9, 121.5, 120.8, 36.1, 21.2. ¹¹B NMR (128 MHz, CDCl₃) δ -14.37. IR (KBr): 3416, 3121, 2925, 1671, 1301, 1180, 764, cm-1. HR-ESI-MS (m/z): calcd for C₂₀H₂₃BN₃O₂ [M + H]⁺: 348.1877, found: 348.1887.

1,3-Dimethyl-1H-imidazol-3-ium-2-yl)((2-(4-methoxyphenyl)-3-(pyridin-2-yl)acryloyl)oxy)dihydrobor-

ate (3i)

Flash column chromatography on silica gel (eluent: PE/EA = 1/1, v/v) to afford **3i**. Brown liquid (45.7 mg, 63%). ¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, J = 3.1Hz, 1H), 7.58 – 7.43 (m, 4H), 7.39 (d, J = 8.0 Hz, 1H), 7.03 (dd, J = 7.5, 5.0 Hz, 1H), 6.87 (d, J = 5.9 Hz, 3H), 6.79 (s, 1H), 3.80 (s, 3H), 3.73 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) & 172.3, 159.8, 155.1, 148.9, 141.3, 136.1, 129.6, 127.7, 123.1, 122.8, 121.4, 120.8, 113.9, 55.3, 36.0. ¹¹B NMR (128 MHz, CDCl₃) δ -13.65. IR (KBr): 3223, 3158, 2960, 1581, 1317, 1179, 777, cm–1. HR-ESI-MS (m/z): calcd for C₂₀H₂₃BN₃O₃ [M + H]⁺: 364.1827, found: 364.1838.

1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)((2-(4-fluorophenyl)-3-(pyridin-2-yl)acryloyl)oxy)dihydroborate (3j)

Flash column chromatography on silica gel (eluent: PE/EA = 1/1, v/v) to afford **3j**. Brown liquid (47.1 mg, 67%). ¹H NMR (400 MHz, CDCl₃) δ 8.38 (d, J = 3.2 Hz, 1H), 7.61 – 7.50 (m, 3H), 7.40 (d, J = 7.9 Hz, 1H), 7.09 – 6.98 (m, 3H), 6.87 (s, 2H), 6.80 (s, 1H), 3.75 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 164.0, 161.5, 154.7, 149.0, 140.7, 136.1, 133.3 (d, J = 3.3 Hz), 128.2 (d, J = 8.2

Hz), 124.9, 123.0, 121.7, 120.7, 115.4 (d, J = 21.6 Hz), 36.0. ¹¹B NMR (128 MHz, CDCl₃) δ -14.55. IR (KBr): 3400, 3159, 2927, 1579, 1320, 1171, 777, cm–1. HR-ESI-MS (m/z): calcd for C₁₉H₂₀BFN₃O₂ [M + H]⁺: 352.1627, found: 352.1638.

2-(4-Bromophenyl)-3-(pyridin-2-yl)acryloyl)oxy)(1,3-dimethyl-1*H*-imidazol-3-ium-2-yl)dihydroborate (3k)

Flash column chromatography on silica gel (eluent: PE/EA = 1/1, v/v) to afford **3k**. Brown liquid (57.5 mg, 70%). ¹H NMR (400 MHz, CDCl₃) δ 8.38 (d, *J* = 4.8 Hz, 1H), 7.57 (d, *J* = 1.9 Hz, 1H), 7.48 – 7.39 (m, 5H), 7.08 (d, *J* = 4.0 Hz, 1H), 6.87 (s, 2H), 6.85 (s, 1H), 3.74 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.6, 154.5, 149.0, 140.6, 136.2, 136.1, 131.6, 128.0, 125.4, 123.2, 122.3,

121.9, 120.8, 36.0. ¹¹B NMR (128 MHz, CDCl₃) δ -15.18. IR (KBr): 3431, 3143, 2925, 1661, 1315, 1179, 781, cm–1. HR-ESI-MS (m/z): calcd for C₁₉H₂₀BBrN₃O₂ [M + H]⁺: 412.0826, found: 412.0837.

2-(4-Cyanophenyl)-3-(pyridin-2-yl)acryloyl)oxy)(1,3-dimethyl-1*H*-imidazol-3-ium-2-yl)dihydroborate (3l)

Flash column chromatography on silica gel (eluent: PE/EA = 1/1, v/v) to afford **31**. Red brown liquid (56.2 mg, 73%). ¹H NMR (400 MHz, CDCl₃) δ 8.38 (d, *J* = 3.4 Hz, 1H), 7.71 – 7.56 (m, 5H), 7.41 (d, J = 7.9 Hz, 1H), 7.14 – 7.08 (m, 1H), 6.93 (s, 1H), 6.90 (s, 2H), 3.76 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 154.0, 149.1, 141.7, 140.0, 136.2, 132.3, 127.6, 127.0, 123.6, 122.3, 120.8, 118.8, 111.4, 36.0. ¹¹B NMR (128 MHz, CDCl₃) δ -14.33. IR (KBr): 3368, 3161, 2227, 1580, 1398, 1176, 923, 776, cm–1. HR-ESI-MS (m/z): calcd for C₂₀H₁₉BN₄NaO₂ [M + Na]⁺: 381.1493, found: 381.1495.

(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)((3-(pyridin-2-yl)-2-(4-(trifluoromethyl)phenyl)acryloyl)oxy)dih -ydroborate (3m)

Flash column chromatography on silica gel (eluent: PE/EA = 1/1, v/v) to afford **3m**. Yellow brown liquid (60.1 mg, 75%). ¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, *J* = 3.3 Hz, 1H), 7.68 (d, *J* = 8.2 Hz, 2H), 7.62 – 7.54 (m, 3H), 7.42 (d, *J* = 7.9 Hz, 1H), 7.14 – 7.05 (m, 1H), 6.92 (s, 1H), 6.88 (s, 2H), 3.74 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 154.2, 149.0, 140.7, 140.4, 136.2, 129.9 (q,

J = 32.4 Hz), 126.9, 126.7, 125.4 (q, J = 3.9 Hz), 123.4, 122.1, 120.8, 36.0. ¹¹B NMR (128 MHz, CDCl₃) δ -13.99. IR (KBr): 3338, 3161, 2862, 1582, 1326, 1198, 777, cm–1. HR-ESI-MS (m/z): calcd for C₂₀H₁₉BF₃N₃NaO₂ [M + Na]⁺: 424.1415, found: 424.1410.

(1, 3-Dimethyl - 1H-imidazol - 3-ium - 2-yl)((2-(2-fluorophenyl) - 3-(pyridin - 2-yl)acryloyl) oxy) dihydroborate

(**3**n)

Flash column chromatography on silica gel (eluent: PE/EA = 1/1, v/v) to afford **3n**. Brown liquid (51.2 mg, 73%). ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, *J* = 4.9 Hz, 1H), 7.62 (d, *J* = 1.8 Hz, 1H), 7.50 (d, *J* = 6.5 Hz, 2H), 7.15 – 7.08 (m, 2H), 7.07 – 6.96 (m, 3H), 6.85 (s, 2H), 3.76 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 154.8, 148.9, 136.3, 136.0, 130.7 (d, *J* = 5.3 Hz), 130.2 (d, *J* = 3.4 Hz), 129.6 (d, *J* = 8.6 Hz),

124.2 (d, J = 3.5 Hz), 123.6, 122.0, 120.6, 115.9, 115.7, 36.0. ¹¹B NMR (128 MHz, CDCl₃) δ -13.19. IR (KBr): 3400, 3111, 2857, 1579, 1427, 1171, 777, cm–1. HR-ESI-MS (m/z): calcd for C₁₉H₂₀BFN₃O₂ [M + H]⁺: 352.1627, found: 352.1618.

(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)((2-(3-methoxyphenyl)-3-(pyridin-2-yl)acryloyl)oxy)dihydroborate (30)

Flash column chromatography on silica gel (eluent: PE/EA = 1/1, v/v) to afford **30**. Brown liquid (47.2 mg, 65%). ¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, *J* = 4.8 Hz, 1H), 7.58 (t, *J* = 7.7 Hz, 1H), 7.46 (d, *J* = 7.9 Hz, 1H), 7.23 (d, *J* = 8.0 Hz, 1H), 7.17 – 7.03 (m, 4H), 6.90 – 6.83 (m, 4H), 3.81 (s, 3H), 3.77 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 159.6, 154.8, 149.0, 141.7, 136.1, 129.4, 125.3, 123.0, 121.7, 120.7, 120.7, 119.1, 114.2, 111.6, 55.3, 36.0. ¹¹B NMR (128 MHz, CDCl₃)

δ -13.81 (d, J = 79.0 Hz). IR (KBr): 3223, 3111, 2960, 1581, 1248, 1179, 777, cm–1. HR-ESI-MS (m/z): calcd for C₂₀H₂₃BN₃O₃ [M + H]⁺: 364.1827, found: 364.1839.

(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)((2-(3-fluorophenyl)-3-(pyridin-2-yl)acryloyl)oxy)dihydroborate

(3p)

Flash column chromatography on silica gel (eluent: PE/EA = 1/1, v/v) to afford **3p**. Brown liquid (46.3 mg, 66%). ¹H NMR (400 MHz, CDCl₃) δ 8.41 (d, *J* = 5.4 Hz, 1H), 7.63 – 7.53 (m, 1H), 7.43 (d, *J* = 6.9 Hz, 1H), 7.39 – 7.30 (m, 2H), 7.22 (d, *J* = 10.5 Hz, 1H), 7.13 – 7.05 (m, 1H), 7.02 – 6.94 (m, 1H), 6.88 (s, 2H), 6.87 (s, 1H), 3.77 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.6, 164.0, 161.6, 154.4, 149.1, 140.5 (d, *J* = 2.7 Hz), 139.4 (d, *J* = 7.8 Hz), 136.2, 129.9 (d, *J* = 8.4 Hz), 125.9,

123.2, 122.1(d, J = 2.8 Hz), 121.9, 120.8, 115.1, 114.9, 113.4, 113.1, 36.0. ¹¹B NMR (128 MHz, CDCl₃) δ -14.10. IR (KBr): 3400, 3159, 2857, 1579, 1395, 1171, 777, cm–1. HR-ESI-MS (m/z): calcd for C₁₉H₂₀BFN₃O₂ [M + H]⁺: 352.1627, found: 352.1632.

((2-(3-chlorophenyl)-3-(pyridin-2-yl)acryloyl)oxy)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)dihydroborate (3q)

Flash column chromatography on silica gel (eluent: PE/EA = 1/1, v/v) to afford **3q**. Yellow brown liquid (52.1mg, 71%). ¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, J = 3.9 Hz, 1H), 7.67 – 7.53 (m, 1H), 7.51 – 7.40 (m, 3H), 7.27 (d, J = 2.8 Hz, 2H), 7.12 – 7.06 (m, 1H), 6.89 (s, 2H), 6.86 (s, 1H), 3.78 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 154.4, 149.1, 140.3, 139.0, 136.2, 134.3, 129.7, 128.1,

126.4, 126.1, 124.6, 123.2, 122.0, 120.8, 36.1. ¹¹B NMR (128 MHz, CDCl₃) δ -15.02. IR (KBr): 3413, 3050,

2925, 1661, 1381, 1179, 781, cm–1. HR-ESI-MS (m/z): calcd for C₁₉H₁₉BClN₃NaO₂ [M + H]⁺: 390.1151, found: 390.1168.

((2-(3-Bromophenyl)-3-(pyridin-2-yl)acryloyl)oxy)(1,3-dimethyl-1*H*-imidazol-3-ium-2-yl)dihydroborate (3r)

Flash column chromatography on silica gel (eluent: PE/EA = 1/1, v/v) to afford **3r**. Yellow brown liquid (60.0mg, 73%). ¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, *J* = 4.1 Hz, 1H), 7.64 – 7.55 (m, 2H), 7.51 (d, *J* = 7.9 Hz, 1H), 7.47 – 7.38 (m, 2H), 7.21 (t, *J* = 7.9 Hz, 1H), 7.13 – 7.02 (m, 1H), 6.88 (s, 2H), 6.85 (s, 1H), 3.77 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 154.3, 149.1, 140.2, 139.4, 136.2, 131.0, 130.0, 129.3, 126.2, 125.0, 123.2, 122.5, 122.0, 120.8, 36.0. ¹¹B NMR (128 MHz, CDCl₃) δ -13.83.

IR (KBr): 3431, 3143, 2957, 1661, 1381, 1103, 781, cm–1. HR-ESI-MS (m/z): calcd for C₁₉H₂₀BBrN₃O₂ [M + H]⁺: 412.0826, found: 412.0825.

((2-(3,4-Dichlorophenyl)-3-(pyridin-2-yl)acryloyl)oxy)(1,3-dimethyl-1*H*-imidazol-3-ium-2-yl)dihydrobo -rate (3s)

Flash column chromatography on silica gel (eluent: PE/EA = 1/1, v/v) to afford **3s**. Brown liquid (56.1mg, 70%). ¹H NMR (400 MHz, CDCl₃) δ 8.41 (d, *J* = 5.0 Hz, 1H), 7.66 – 7.51 (m, 2H), 7.47 – 7.35 (m, 3H), 7.16 – 7.03 (m, 1H), 6.89 (s, 2H), 6.84 (s, 1H), 3.78 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 154.1, 149.1, 139.3, 137.3, 136.2, 132.5, 132.0, 130.4, 128.2, 126.4, 125.7, 123.3, 122.1, 120.8, 36.1. ¹¹B NMR (128 MHz, CDCl₃) δ -14.39. IR (KBr): 3119, 2956, 1672,

1473, 1112, 743, cm-1. HR-ESI-MS (m/z): calcd for C₁₉H₁₉BCl₂N₃O₂ [M + H]⁺: 402.0942, found: 402.0942.

((2-(2,4-Dichlorophenyl)-3-(pyridin-2-yl)acryloyl)oxy)(1,3-dimethyl-1*H*-imidazol-3-ium-2-yl)dihydrobo -rate (3t)

Flash column chromatography on silica gel (eluent: PE/EA = 1/1, v/v) to afford **3t**. Brown liquid (57.7mg, 72%). ¹H NMR (400 MHz, $CDCl_3$) δ 8.54 – 8.47 (m, 1H), 7.67 – 7.54 (m, 2H), 7.44 (d, J = 8.3 Hz, 1H), 7.36 (d, J = 2.1 Hz, 1H), 7.24 (dd, J = 8.3, 2.2 Hz, 1H), 7.18 – 7.10 (m, 1H), 6.82 (s, 2H), 6.79 (s, 1H), 3.71 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 154.4, 148.9, 138.1, 137.2, 135.8, 134.2, 134.0, 133.7, 132.0, 129.3, 127.1, 124.0, 122.3, 120.7, 36.0. ¹¹B NMR (128 MHz, CDCl₃) δ -13.92. IR (KBr): 3162, 2926, 1672, 1368, 1112, 776, cm–1. HR-ESI-MS (m/z): calcd for C₁₉H₁₉BCl₂N₃O₂ [M + H]⁺: 402.0942, found: 402.0941.

(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)((2-(4-fluorophenyl)-3-(3-methylpyridin-2-yl)acryloyl)oxy)dihyd -roborate (3u)

Flash column chromatography on silica gel (eluent: PE/EA = 1/1, v/v) to afford **3u**. Brown liquid (45.2mg, 62%). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 3.1 Hz, 1H), 7.61 – 7.50 (m, 2H), 7.38 (d, *J* = 6.7 Hz, 1H), 7.03 (t, *J* = 8.7 Hz, 2H), 6.95 (dd, *J* = 7.6, 4.7 Hz, 1H), 6.87 (s, 2H), 6.86 (s, 1H), 3.77 (s, 6H), 2.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.1, 163.9, 161.5, 153.0, 146.1, 141.3, 137.5,

134.1 (d, J = 3.2 Hz), 131.4, 128.5 (d, J = 8.1 Hz), 122.1 (d, J = 1.7 Hz), 121.7, 120.6, 115.4, 115.2, 36.0, 18.9. ¹¹B NMR (128 MHz, CDCl₃) δ -15.27. IR (KBr): 3382, 3161, 2927, 1576, 1397, 1167, 778, cm–1. HR-ESI-MS (m/z): calcd for C₂₀H₂₂BFN₃O₂ [M + H]⁺: 366.1784, found: 366.1779.

((2-(4-Chlorophenyl)-3-(3-methylpyridin-2-yl)acryloyl)oxy)(1,3-dimethyl-1*H*-imidazol-3-ium-2-yl)dihy droborate (3v)

Flash column chromatography on silica gel (eluent: PE/EA = 1/1, v/v) to afford **3v**. Red brown liquid (48.7mg, 64%). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 4.0 Hz, 1H), 7.52 (d, *J* = 8.5 Hz, 2H), 7.38 (d, *J* = 7.6 Hz, 1H), 7.33 – 7.29 (m, 2H), 7.00 – 6.92 (m, 1H), 6.90 (s, 1H), 6.87 (s, 2H), 3.78 (s, 6H), 2.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 152.9, 146.1, 141.2, 137.5, 136.4, 133.9,

131.5, 128.5, 128.1, 122.6, 121.9, 120.6, 36., 18.9. ¹¹B NMR (128 MHz, CDCl₃) δ -15.46. IR (KBr): 3400, 3120, 2956, 1671, 1376, 1113, 831, cm–1. HR-ESI-MS (m/z): calcd for C₂₀H₂₁BClN₃NaO₂ [M + Na]⁺: 404.1308, found: 404.1303.

((2-(3-Chlorophenyl)-3-(4-methylpyridin-2-yl)acryloyl)oxy)(1,3-dimethyl-1*H*-imidazol-3-ium-2-yl)dihy droborate (3w)

Flash column chromatography on silica gel (eluent: PE/EA = 1/1, v/v) to afford **3w**. Brown solid (52.5mg, 69%). ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, J = 5.0 Hz, 1H), 7.49 – 7.40 (m, 2H), 7.36 – 7.25 (m, 3H), 6.91 (d, J = 5.1 Hz, 1H), 6.87 (s, 2H), 6.83 (s, 1H), 3.75 (s, 6H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 154.1, 148.8, 147.2, 140.0, 139.1, 134.2, 129.7, 128.0, 126.4,

126.3, 124.5, 124.2, 123.1, 120.8, 36.0, 21.0. ¹¹B NMR (128 MHz, CDCl₃) δ -13.72. IR (KBr): 3400, 3120, 2926, 1671, 1299, 1113, 800, cm–1. HR-ESI-MS (m/z): calcd for C₂₀H₂₂BClN₃O₂ [M + H]⁺: 382.1488, found: 382.1492.

((2-(3-Bromophenyl)-3-(4-methoxypyridin-2-yl)acryloyl)oxy)(1,3-dimethyl-1H-imidazol-3-ium-2-yl)dih

Flash column chromatography on silica gel (eluent: PE/EA = 1/1, v/v) to afford **3x**. Brown liquid (52.0mg, 59%). ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, *J* = 5.7 Hz, 1H), 7.57 (d, *J* = 1.9 Hz, 1H), 7.50 (d, *J* = 7.0 Hz, 1H), 7.41 (d, *J* = 6.9 Hz, 1H), 7.24 – 7.18 (m, 1H), 7.10 (d, *J* = 2.3 Hz, 1H), 6.88 (s, 2H), 6.84 (s, 1H), 6.65 (d, *J* = 3.4 Hz, 1H), 3.87 (s, 3H), 3.78 (s, 6H). ¹³C NMR

(100 MHz, CDCl₃) δ 171.4, 165.9, 156.0, 150.1, 140.3, 139.2, 131.0, 130.0, 129.3, 126.5, 125.0, 122.5, 120.8, 109.2, 108.3, 55.2, 36.0. ¹¹B NMR (128 MHz, CDCl₃) δ -14.43. IR (KBr): 3423, 3124, 2956, 1671, 1309, 1112, 786, cm–1. HR-ESI-MS (m/z): calcd for C₂₀H₂₂BBrN₃O₃ [M + H]⁺: 442.0932, found: 442.0940.

((2-(3,4-Dichlorophenyl)-3-(3-methylpyridin-2-yl)acryloyl)oxy)(1,3-dimethyl-1*H*-imidazol-3-ium-2-yl)di hydroborate (3y)

Flash column chromatography on silica gel (eluent: PE/EA = 1/1, v/v) to afford **3y**. Brown liquid (52.3mg, 63%). ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 4.6 Hz, 1H), 7.61 (d, *J* = 2.1 Hz, 1H), 7.47 – 7.35 (m, 3H), 7.02 – 6.95 (m, 1H), 6.91 (s, 1H), 6.89 (s, 2H), 3.79 (s, 6H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 152.5, 146.2, 140.0, 138.1, 137.6, 132.4, 131.8, 131.7, 130.3, 128.5, 126.2, 123.7, 122.1, 120.7, 36.1, 18.9. ¹¹B NMR (128 MHz, CDCl₃) δ -14.38. IR (KBr):

3400, 3163, 2956, 1671, 1376, 1113, 775, cm–1. HR-ESI-MS (m/z): calcd for C₂₀H₂₁BCl₂N₃O₂ [M + H]⁺: 416.1098, found: 416.1113.

(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)((3-(3,5-dimethylpyridin-2-yl)-2-(4-fluorophenyl)acryloyl)oxy)di hydroborate (3z)

Flash column chromatography on silica gel (eluent: PE/EA = 1/1, v/v) to afford **3z**. Brown liquid (50.8mg, 67%). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 2.1 Hz, 1H), 7.58 - 7.46 (m, 2H), 7.22 - 7.16 (m, 1H), 7.02 (t, J = 8.6 Hz, 2H), 6.87 (s, 2H), 6.83 (s, 1H), 3.78 (s, 6H), 2.33 (s, 3H), 2.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) & 172.3, 163.8, 161.4, 150.3, 146.6, 140.4, 138.1, 134.2 (d, J = 3.4 Hz), 131.2, 130.8, 128.4 (d, J = 8.1 Hz), 122.3, 120.6, 115.4, 115.1. ¹¹B NMR (128 MHz,

CDCl₃) δ -15.09. IR (KBr): 3388, 3165, 2926, 1671, 1380, 1231, 841, cm-1. HR-ESI-MS (m/z): calcd for $C_{21}H_{24}BFN_{3}O_{2}[M + H]^{+}$: 380.1940, found: 380.1938.

(1,3-Dimethyl-1*H*-imidazol-3-ium-2-yl)((2-(naphthalen-2-yl)-3-(pyridin-2-yl)acryloyl)oxy)dihydroborat

-e (3aa)

Flash column chromatography on silica gel (eluent: PE/EA = 1/1, v/v) to afford **3aa**. Brown liquid (53.6mg, 70%). ¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, J = 4.0Hz, 1H), 7.94 - 7.90 (m, 1H), 7.84 - 7.76 (m, 3H), 7.74 (d, J = 8.7 Hz, 1H), 7.60(t, J = 8.6 Hz, 1H), 7.50 (d, J = 8.0 Hz, 1H), 7.47 - 7.43 (m, 2H), 7.13 - 7.04 (m,1H), 7.03 (s, 1H), 6.86 (s, 2H), 3.75 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.1, 154.89, 149.1, 141.6, 136.2, 134.3, 133.3, 133.1, 128.4, 128.1, 127.5, 126.3 -

126.0 (m), 125.4, 123.9, 123.1, 121.7, 120.7, 36.1. ¹¹B NMR (128 MHz, CDCl₃) δ -14.20. IR (KBr): 3417, 3160, 2923, 1581, 1381, 1175, 756, cm-1. HR-ESI-MS (m/z): calcd for C₂₃H₂₃BN₃O₂ [M + H]⁺: 384.1878, found: 384.1870.

(1-Isopropyl-3-methyl-1*H*-imidazol-3-ium-2-yl)((2-phenyl-3-(pyridin-2-yl)acryloyl)oxy)dihydroborate

(4a)

Flash column chromatography on silica gel (eluent: PE/EA = 1/1, v/v) to afford **4a**. Brown liquid (52.7mg, 73%). ¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, J = 5.6 Hz, 1H), 7.56 (d, J = 7.9 Hz, 3H), 7.50 (d, J = 7.9 Hz, 1H), 7.37 – 7.27 (m, 3H), 7.11 – 7.03 (m, 1H), 6.96 (d, J = 1.9 Hz, 1H), 6.89 (s, 1H), 6.87 (s, 1H), 5.22 - 5.06 (m, 1H), 3.72 (s, 3H), 1.29 (d, J = 6.7 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 154.8, 149.1, 141.8, 137.0, 136.1, 128.4, 128.2, 126.4, 125.2, 122.8, 121.7, 121.3, 115.4, 50.0, 35.9, 23.02. ¹¹B NMR (128 MHz, CDCl₃) δ -15.17. IR (KBr): 3457, 2925, 1672, 1378, 1109, 778, cm–1. HR-ESI-MS (m/z): calcd for C₂₁H₂₅BN₃O₂ [M + H]⁺: 362.2034, found: 362.2030.

3. NMR spectra for new compounds

¹¹B NMR spectrum of compound **3a**

 ^1H NMR and ^{13}C NMR spectrum of compound 3c

¹¹B NMR spectrum of compound **3c**

 ^1H NMR and ^{13}C NMR spectrum of compound 3e

¹¹B NMR spectrum of compound **3e**

11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 f1 (ppm)

 ^1H NMR and ^{13}C NMR spectrum of compound 3g

 ^{11}B NMR spectrum of compound 3g

¹H NMR and ¹³C NMR spectrum of compound **3i**

¹¹B NMR spectrum of compound **3i**

 ^1H NMR and ^{13}C NMR spectrum of compound 3k

 ^{11}B NMR spectrum of compound 3k

S32

 ^1H NMR and ^{13}C NMR spectrum of compound 3m

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹¹B NMR spectrum of compound **3m**

S36

¹¹B NMR spectrum of compound **30**

 ^1H NMR and ^{13}C NMR spectrum of compound 3q

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹¹B NMR spectrum of compound **3**q

 1 H NMR and 13 C NMR spectrum of compound **3s**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 −10 f1 (ppm)

¹¹B NMR spectrum of compound **3s**

 ^1H NMR and ^{13}C NMR spectrum of compound 3u

¹¹B NMR spectrum of compound **3u**

S47

¹¹B NMR spectrum of compound **3w**

 ^1H NMR and ^{13}C NMR spectrum of compound 3y

¹¹B NMR spectrum of compound **3y**

¹¹B NMR spectrum of compound **3aa**

4. X-ray crystallographic data

Figure S1 X-ray single crystal structure of 3w

Single crystals of **3w** were grown by slow evaporation of its DCM/PE solution. Single-crystal X-ray diffraction data were collected with a 'multiwire proportional' diffractometer. The crystal was kept at 149.99 K during data collection. Using Olex2, the structure was solved with the olex2.solve structure solution program using Charge Flipping and refined with the olex2.refine refinement package using Least Squares minimization. Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Center (CCDC 2116778).

<i>Tuble</i> ST Crystal data and structure refinement for S ^{<i>v</i>}	Table S1	Crystal of	data and	structure	refinement	for 3 w
---	----------	------------	----------	-----------	------------	----------------

Identification code	2-477
Empirical formula	$C_{20}H_{21}BClN_3O_2$
Formula weight	381.66
Temperature/K	149.99(10)
Crystal system	monoclinic
Space group	Cc
a/Å	13.0381(3)
b/Å	20.5925(7)
c/Å	7.15692(19)
α/°	90
$\beta^{\prime \circ}$	91.598(3)
$\gamma/^{\circ}$	90
Volume/Å ³	1920.80(10)
Ζ	4
$\rho_{calc}g/cm^3$	1.320
µ/mm ⁻¹	1.920

F(000)	800.0
Crystal size/mm ³	$0.14 \times 0.11 \times 0.09$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	8.028 to 147.396
Index ranges	$-14 \le h \le 16, -25 \le k \le 20, -6 \le l \le 8$
Reflections collected	3641
Independent reflections	2528 [$R_{int} = 0.0275$, $R_{sigma} = 0.0389$]
Data/restraints/parameters	2528/2/248
Goodness-of-fit on F ²	1.073
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0346, wR_2 = 0.0857$
Final R indexes [all data]	$R_1 = 0.0361, wR_2 = 0.0880$
Largest diff. peak/hole / e Å-3	0.17/-0.20
Flack parameter	0.02(2)

Table S2 Bond Lengths for 3w

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Cl1	C12	1.744(3)	C9	C20	1.399(4)
O1	C8	1.216(3)	N2	C18	1.456(4)
O2	C8	1.309(3)	N3	C14	1.352(3)
O2	B1	1.526(4)	N3	C16	1.379(4)
N1	C1	1.351(4)	N3	C17	1.457(4)
N1	C5	1.335(4)	C1	C2	1.381(4)
N2	C14	1.343(3)	C1	C6	1.476(3)
N2	C15	1.374(4)	C2	C3	1.397(4)
C3	C4	1.377(5)	C10	C11	1.386(5)
C3	C19	1.495(4)	C11	C12	1.381(4)
C4	C5	1.389(5)	C12	C13	1.389(4)
C6	C7	1.339(4)	C13	C20	1.398(4)
C7	C8	1.514(4)	C14	B1	1.622(4)
C7	C20	1.482(3)	C15	C16	1.343(5)
C9	C10	1.398(4)			

Table S3 Bond Angles for 3w

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C8	O2	B1	118.5(2)	C20	C7	C8	114.7(2)
C5	N1	C1	116.2(3)	01	C8	O2	125.6(2)
C14	N2	C15	111.0(2)	O1	C8	C7	120.9(2)
C14	N2	C18	124.4(2)	O2	C8	C7	113.3(2)
C15	N2	C18	124.5(3)	C10	C9	C20	120.0(3)
C14	N3	C16	110.2(2)	C11	C10	C9	120.9(3)

C14	N3	C17	125.9(2)	C12	C11	C10	118.4(3)
C16	N3	C17	123.9(2)	C11	C12	Cl1	120.1(2)
N1	C1	C2	123.0(3)	C11	C12	C13	122.2(3)
N1	C1	C6	117.2(3)	C13	C12	C11	117.7(2)
C2	C1	C6	119.7(3)	C12	C13	C20	119.4(3)
C1	C2	C3	120.2(3)	N2	C14	N3	105.2(2)
C2	C3	C19	122.3(3)	N2	C14	B1	126.1(2)
C4	C3	C2	116.6(3)	N3	C14	B1	128.7(2)
C4	C3	C19	121.2(3)	C16	C15	N2	106.6(3)
C3	C4	C5	119.9(3)	C15	C16	N3	107.1(2)
N1	C5	C4	123.9(3)	C9	C20	C7	121.6(2)
C7	C6	C1	125.3(2)	C13	C20	C7	119.3(2)
C6	C7	C8	122.5(2)	C13	C20	C9	119.1(2)
C6	C7	C20	122.4(2)	O2	B1	C14	110.2(2)

5. References

- 1. H. Cao, H. Zhan, Y. Lin, X. Lin, Z. Du, H. Jiang, Org. Lett. 2012, 14, 1688–1691.
- 2. H. Zhan, L. Zhao, N. Li, L. Chen, J. Liu, J. Liao, H. Cao, RSC Adv. 2014, 4, 32013–32016.
- 3. S. Gardner, T. Kawamoto, Dennis P. Curran, J. Org. Chem. 2015, 80, 9794-9797