Supplementary Information for:

Facile preparation of polypyrrole modified Chinese yam peel-based adsorbent: Characterization, performance, and application in removal of Congo red dye

Yan Wang^{*}, Rongyao Chen, Zijing Dai, Qingcai Yu, Yongmei Miao, Ronghua Xu College of Life and Health Sciences, Anhui Science and Technology University, Fengyang 233100, China

Text S1 Kinetic models

The adsorption kinetic model and their linearization equations were represented as follows:

Pesudo-first-order kinetic model:
$$\log(q_e - q_t) = \log q_e - \frac{k_1}{2.303}t$$
 (1)

Pesudo-second-order kinetic model:
$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{1}{q_e} t$$
 (2)

Elovich equation:
$$q_t = \frac{1}{b} \ln(ab) + \frac{1}{b} \ln t$$
 (3)

Intra-particle diffusion equation: $q_t = k_p t^{1/2} + c$ (4)

where q_e (mg·g⁻¹) and q_t (mg·g⁻¹) are the amount of CR adsorbed on CYP-PPy at equilibrium and at a given time t (min), respectively. k_l (min⁻¹) and k_2 (g·mg⁻¹·min⁻¹) are the rate constant of pseudo-first-order and pseudo-second-order kinetic equations. The parameter a (mg·g⁻¹·min⁻¹) is the initial adsorption rate constant and b (g·mg⁻¹) is related to the extent of surface coverage and activation energy for chemisorptions. k_p (mg·g⁻¹·min^{-0.5}) is the diffusion equation, and c (mg·g⁻¹) is a constant related to the thickness of the boundary layer.

Text S2 Isotherm models

The corresponding isotherm equations are given in Eqs. (5)-(8), respectively.

Freundlich isotherm model:
$$\ln q_e = \ln K_f + \frac{1}{n} \ln C_e$$
 (5)

Langmuir isotherm model:
$$\frac{C_e}{q_e} = \frac{1}{K_l q_m} + \frac{C_e}{q_m}$$
 (6)

D-R isotherm model:
$$\ln q_e = \ln q_m - K_D [RT \ln \left(1 + \frac{1}{C_e}\right)]^2$$
 (7)
Temkin isotherm model: $q_e = \frac{RT}{b_T} \ln A_T + \frac{RT}{b_T} \ln C_e$ (8)

where q_e (mg·g⁻¹) represents the adsorption capacity at equilibrium, C_e (mg·L⁻¹) is the equilibrium concentration of Mb in solution, K_f and n are the Freundlich constants related to the adsorption capacity and adsorption intensity of the adsorbent,

respectively. The value of Freundlich constant 1/n indicates the type of sorption process to be unfavorable (1/n>1), favorable (0<1/n<1), and irreversible (1/n = 0). q_m (mg·g⁻¹) is the maximum amount of Mb adsorbed per unit mass of adsorbent required for monolayer coverage of the surface, K_l (L·mg⁻¹) is Langmuir constant related to the adsorption energy. The K_D (mol²·J⁻²) parameter is activity coefficient depending on the mean free energy of adsorption. R (8.314 J·mol⁻¹·K⁻¹) is the gas constant and T (K) is the absolute temperature. A_T (mL·mg⁻¹) and b_T (J·mol⁻¹) are the isotherm constant and Temkin-Pyzhev constant, respectively.

The adsorption condition can be interpreted by separation factor R_L , which is defined by the following Eq.(9)

$$0.8$$

 0.6
 0.6
 0.4
 0.2
 0.2
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0

$$R_L = \frac{1}{1 + K_I C_0} \tag{9}$$

Fig. S1. Standard curve of Congo red

Fig. S2. Comparison of adsorption of CR onto CYP-PPy composite after the regeneration process.