Supplementary Information

Antimicrobial activity of silver sulfide quantum dots functionalized with highly conjugated Schiff bases in a one-step synthesis

Nurulizzatul Ningsheh M. Shahri, Hussein Taha, Malai Haniti S.A. Hamid, Eny Kusrini, Jun-Wei Lim, Jonathan Hobley, Anwar Usman

Synthesis of Schiff bases

Synthesis of methyl (2Z)-2-[(anthracen-9-yl)methylidene]hydrazine-1-carbodithioate (9-9anSM)

S-Methyldithiocarbazate (0.1185 g, 1.64 mmol) was dissolved in hot absolute ethanol (10 mL) and was then added to a hot solution of 9-anthracenecarboxaldehyde (0.2 g, 1.64 mmol) in the same solvent (10 mL). Glacial acetic acid was also added as a catalyst. A colour change from clear to a dark orange was observed. The stirred reaction mixture was kept under reflux for 45 minutes after which a bright orange precipitate formed. The reaction progress was monitored on TLC plates every 5 minutes. The mixture was then left to stand overnight, to maximise crystal precipitation. The crystals were then filtered, washed with cold ethanol, recrystallised from absolute ethanol and dried in a desiccator containing anhydrous silica. Yield: 0.2902 g, 96%; m.p. 232-234 °C; IR (v_{max} , cm⁻¹): 3147 v(N-H), 1551 v(C=N), 2976 v(C-H), 968 v(C=S);

¹H NMR (DMSO-d₆) δH: 13.46 (s, 1H, -NH), 9.59 (s, 1H, -C=N), 8.79 (t, 3H), 8.20 (d, 2H), 7.60-7.71 (m, 4H) (Ar-H), 2.61 (s, 3H, -SCH₃).

Synthesis of Benzyl (2E)-2-[(anthracen-9-yl)methylidene]hydrazine-1-carbodithioate] (9-9anSB)

S-Benzyldithiocarbazate (0.1923 g, 0.97 mmol) was dissolved in hot absolute ethanol (10 mL) and was then added to a hot solution of 9-anthracenecarboxaldehyde (0.2 g, 0.97 mmol) in the same solvent (10 mL). Glacial acetic acid was also added as a catalyst. A colour change to a pale orange was observed. The stirred reaction mixture was kept under reflux for three minutes after which a bright yellow-orange precipitate formed. The reaction progress was monitored on TLC plates every 5 minutes. The mixture was then left to stand overnight, to maximise crystal precipitation. The crystals were then filtered, washed with cold ethanol, recrystallised from absolute ethanol and dried in a desiccator containing anhydrous silica. Yield: 0.3085 g, 82%; m.p. 208-210 °C; IR (v_{max} , cm⁻¹): 3080 v(N-H), 2857 v(C-H), 1552 v(C=N), 956 v(C=S); ¹H NMR (DMSO-d₆) δ H: 13.51 (s, 1H, -NH), 9.58 (s, 1H, -C=N), 8.73 (d, 2H), 8.18 (d, 2H), 7.58-7.68 (m, 4H), 7.45 (d, 2H), 7.34 (t, 2H), 7.27 (t, 1H) (Ar-H), 4.59 (s, 2H, -SCH₂).

Synthesis of methyl (2E)-2-[1-(pyrazin-2-yl)ethylidene]hydrazine-1-carbodithioate (AcpySM)

The synthesis of acetylpyrazine of *S*-methyldithiocarbazate was based on the procedures reported by Hamid *et al.* [96]. S-Methyldithiocarbazate (0.2 g, 1.64 mmol) was dissolved in hot absolute ethanol (10 mL) and was then added to a hot solution of acetylpyrazine (0.2 g,

1.64 mmol) in the same solvent (10 mL). Glacial acetic acid was also added as a catalyst. A colour change from clear to a pale yellow was observed. The stirred reaction mixture was kept under reflux for 30 minutes after which a pale yellow precipitate was formed. The reaction progress was monitored on TLC plates every 5 minutes. The mixture was then left to stand overnight, to maximise crystal precipitation. The crystals were then filtered, washed with cold ethanol, recrystallised from absolute ethanol and dried in a desiccator containing anhydrous silica. Yield: 0.2593 g, 93% (Lit. yield 94%); m.p. 180-183 °C (Lit. m.p. 180-183 °C); IR (v_{max} , cm⁻¹): 3445 v(O-H), 3080 v(N-H), 2948 v(C-H), 1608 v(C=N), 956 v(C=S); ¹H NMR (DMSO-d₆) δ H: 10.08 (s, 1H, -NH), 8.55-8.56 (s, 3H) (Ar-H), 2.69 (s, 3H, -SCH₃), 2.43 (s, 3H).

Synthesis of Benzyl 2-[1-(pyrazin-2-yl)ethylidene]hydrazine-1-carbodithioate (AcpySB)

The synthesis of AcpySbn was based on the procedures reported by Hamid *et al.* [96]. *S*-Benzyldithiocarbazate (0.3248 g, 1.64 mmol) was dissolved in hot absolute ethanol (10 mL) and was then added to a hot solution of acetylpyrazine (0.2 g, 1.64 mmol) in the same solvent (10 mL). Glacial acetic acid was also added as a catalyst. A colour change to a pale yellow was observed. The stirred reaction mixture was kept under reflux for 15 minutes after which a pale yellow precipitate formed. The reaction progress was monitored on TLC plates every 5 minutes. The mixture was then left to stand overnight, to maximise crystal precipitation. The crystals were then filtered, washed with cold ethanol, recrystallised from absolute ethanol and dried in a desiccator containing anhydrous silica. Yield: 0.356 g, 72% (Lit. yield 47%); m.p. 170-172 °C (Lit. [96] m.p. 168-170 °C); IR (v_{max} , cm⁻¹): 3455 v(O-H), 3178 v(N-H), 1610 v(C=N), 2965 v(C-H), 961 v(C=S); ¹H NMR (DMSO-d₆) δ H: 9.37 (s, 1H, -NH), 8.51-8.57 (s, 3H), 7.33-7.64 (m, 5H) (Ar-H), 2.43 (s, 2H, -SCH₂), 2.17 (s, 3H, -CH₃).

Fig. S1. UV-vis absorption spectra of Schiff bases; (a) 9anSM, (b) 9anSB, (c) AcpySM, and (d) AcpySB.

Fig, S2. FTIR spectra of Schiff bases; (a) 9anSM, (b) 9anSB, (c) AcpySM, and (d) AcpySB, and (e) TGA.

Fig. S3. SEM images of (a) 9anSM-Ag₂S QDs, (b) 9anSB-Ag₂S QDs, (c) AcpySM-Ag₂S QDs, and (d) AcpySB-Ag₂S QDs, and (e)TGA.

Fig. S4. SEM-EDX spectra for (a) 9anSM-Ag₂S QDs and (b)TGA-Ag₂S QDs.

Fig. S5. The HRTEM images of (A) 9anSM-Ag₂S QDs, (B) 9anSB-Ag₂S QDs, and (C) AcpySM-Ag₂S QDs.

Fig. S6. The representative images of growth inhibition zones of *B. subtilis* nurtured with (a) AcpySM-Ag₂S and (b) AcpySB-Ag₂S.

Fig. S7. The representative images of microbroth dilution method to determine the lowest concentration of (a) **AcpySM**-Ag₂S QDs, (b) streptomycin, (c) **AcpySB**-Ag₂S QDs, and (d) TGA-Ag₂S QDs to inhibit *B. subtilis* bacterial strain.

Fig. S8. The representative images of growth inhibition zones of *C. albicans* nurtured with (a) **9anSM**-Ag₂S QDs, (b) **9anSB**-Ag₂S QDs, (c) **AcpySM**-Ag₂S QDs, (d) **AcpySB**-Ag₂S, and (d) TGA-Ag₂S QDs to inhibit.

Fig. S9. The images of microbroth dilution method to determine the lowest concentration of (a) 9anSM-Ag₂S QDs, (b) 9anSB-Ag₂S QDs, (c) AcpySM-Ag₂S QDs, (d) AcpySB-Ag₂S, and (d) TGA-Ag₂S QDs to inhibit *C. albicans*.

Sample		Total mortality of brine shrimp (A. salina) larvae (%)				
		0	10	100	1000	10,000
		µg/mL	µg/mL	µg/mL	µg/mL	µg/mL
		(control)				
Schiff bases-Ag ₂ S QDs	9anSM-Ag ₂ S	0	0	0	3.3	5.1
	9anSB-Ag ₂ S	0	0	0	5.7	19.3
	AcpySM-Ag ₂ S	0	0	0	7.5	19.7
	AcpySB-Ag ₂ S	0	3.3	13.3	19.8	39.5
TGA-Ag ₂ S QDs		0	0	0	0	2.3

Table S1. Total mortality of brine shrimp larvae (*A. salina* L.) by Schiff bases-Ag₂S QDs and TGA-Ag₂S QDs.