Supporting information for X-ray wavefunction refinement and comprehensive structural studies on bromo-substituted analogues of 2-deoxy-D-glucose in solid state and solution

Marcin Ziemniak*, Sylwia Pawlędzio, Anna Zawadzka-Kaźmierczuk, Paulina M. Dominiak, Damian Trzybiński, Wiktor Koźmiński, Rafał Zieliński, Izabela Fokt, Waldemar Priebe, Krzysztof Woźniak*, Beata Pająk*

Compound	2-BG	2-BM	sucrose
Empirical formula	C ₆ H ₁₁ BrO ₅	C ₆ H ₁₁ BrO ₅	$C_{12}H_{22}O_{11}$
Formula weight	243.055	243.055	342.302
Temperature/K	100	99.99(10)	100
Crystal system	orthorhombic	monoclinic	monoclinic
Space group	P2 ₁ 2 ₁ 2 ₁	P2 ₁	P2 ₁
a/Ă	6.8069(3)	8.0544(8)	7.7727(9)
b/Å	6.8839(3)	10.3670(7)	8.7216(11)
c/Ă	17.1166(10)	10.0444(8)	10.8637(11)
α/°	90	90	90
β/°	90	90.784(8)	102.983(11)
γ/°	90	90	90
Volume/Å ³	802.06(7)	838.63(12)	717.63(15)
Ζ	4	4	2
$\rho_{calc}g/cm^3$	2.013	1.925	1.584
µ/mm ⁻¹	6.915	6.614	0.142
F(000)	486.9	486.9	364.3
Crystal size/mm ³	$0.041 \times 0.04 \times 0.017$	$0.16 \times 0.049 \times 0.035$	nd.
Radiation	Cu Ka ($\lambda = 1.54184$)	Cu Ka ($\lambda = 1.54184$)	Mo K _α (λ=0.71073Å)
2Θ range for data collection/°	10.34 to 134.16	8.8 to 134.14°	5.38 to 58.42°
Index ranges	$-8 \le h \le 7, -8 \le k \le 5, -20 \le l \le 19$	$-9 \le h \le 8, -12 \le k \le 12, -11 \le l \le 11$	$\begin{array}{c} -10 \leq h \leq 10, -11 \leq k \leq 9, -14 \leq l \leq \\ 14 \end{array}$
Reflections collected	2663	11095	13618
Independent reflections	1437 [$R_{int} = 0.0496$, $R_{sigma} = 0.0710$]	2982[R(int) = 0.0626]	3318[R(int) = 0.0339]
Data/restraints/parameters	1437/3/139	2982/21/267	3318/1/400
Goodness-of-fit on F ²	0.948	1.050	1.093
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0366, wR_2 = 0.0796$	$R_1 = 0.0790, wR_2 = 0.2258$	$R_1 = 0.0238, wR_2 = 0.0395$
Final R indexes [all data]	$R_1 = 0.0425, wR_2 = 0.0838$	$R_1 = 0.0811, wR_2 = 0.2285$	$R_1 = 0.0289, wR_2 = 0.0410$
Largest diff. peak/hole / e Å-3	0.53/-0.51	2.60/-1.61	0.12/-0.14
Flack parameter	-0.06(4)	-0.01(5)	0.1(8)

Table S1. Crystal data and structure refinement details for investigated compounds.

Table S2. Bond lengths for 2-BG

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Br1	C2	1.955(5)	C3	O2	1.422(6)
C1	C2	1.531(7)	C4	C5	1.536(7)
C1	01	1.377(6)	C4	O3	1.432(6)
C1	05	1.426(6)	C5	C6	1.511(7)
C2	C3	1.518(7)	C5	05	1.432(6)
C3	C4	1.531(7)	C6	06	1.426(7)

Table S3. Values of valence angles for 2-BG

Atom Atom Angle/° Atom Atom Angle/°

01	C1	C2	113.9(4)	C5	C4	C3	109.5(4)
O5	C1	C2	107.9(4)	O3	C4	C3	109.7(4)
O5	C1	01	109.1(4)	O3	C4	C5	107.3(4)
C1	C2	Br1	109.2(3)	C6	C5	C4	113.2(4)

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C3	C2	Br1	109.1(3)	05	C5	C4	107.4(4)
C3	C2	C1	112.4(4)	05	C5	C6	109.0(4)
C4	C3	C2	110.5(4)	06	C6	C5	115.3(4)
O2	C3	C2	108.9(4)	C5	05	C1	111.7(4)
O2	C3	C4	110.0(4)				

Table S4. Values of torsion angles for 2-BG

```
        A
        B
        C
        D
        Angle/°
        A
        B
        C
        D
        Angle/°

        Br1
        C2
        C1
        01
        -62.8(4)
        C1
        05
        C5
        C6
        -167.9(4)

        Br1
        C2
        C1
        05
        175.9(3)
        C2
        C3
        C4
        C5
        51.3(5)

        Br1
        C2
        C3
        C4
        -170.6(3)
        C2
        C3
        C4
        C5
        168.8(4)

        Br1
        C2
        C3
        C4
        -49.3(5)
        C3
        C4
        C5
        C6
        179.7(4)

        C1
        C2
        C3
        C4
        -49.3(5)
        C3
        C4
        C5
        05
        -59.9(4)

        C1
        C2
        C3
        C4
        -49.3(5)
        C3
        C4
        C5
        05
        -59.9(4)

        C1
        C2
        C3
        C2
        -170.2(4)
        C4
        C5
        C6
        06
        55.4(5)

        C1
        C5
        C5
        C4
        69.1(4)
        C5
        C6
        C5
        C6
```

Table S5. Bond lengths for 2-BM

Atom Atom Length/ÅAtom Atom Length/ÅBr1AC2A1.950(14)Br1BC2B1.960(14)C1AC2A1.51(2)C1BC2B1.54(2)C1AO1A1.372(17)C1BO1B1.402(16)C1AO5A1.406(18)C1BO5B1.409(16)C2AC3A1.531(18)C2BC3B1.409(16)C3AC4A1.532(2)C3BC4B1.520(19)C3AO3A1.382(16)C3BO3B1.407(16)C4AC5A1.543(18)C4BC5B1.516(18)C4AO4A1.446(14)C4BO4B1.433(15)C5AC6A1.516(19)C5BC6B1.55(2)C5AO5A1.426(17)C5BO5B1.405(15)C6AO6A1.414(17)C6BO6B1.416(18)

Table S6. Values of valence angles for 2-BM

Atom Atom Atom Angle/° Atom Atom Atom Angle/° O1A C1A C2A 111.3(12) O1B C1B C2B 108.5(11) O5A C1A C2A 111.2(11) O5B C1B C2B 110.6(10) O5A C1A O1A 107.7(12) O5B C1B O1B 109.9(11) C1A C2A Br1A 111.5(9) C1B C2B Br1B 110.3(9) C3A C2A Br1A 110.2(9) C3B C2B Br1B 111.7(9) C3A C2A C1A 110.0(12) C3B C2B C1B 112.7(11) C4A C3A C2A 110.6(10) C4B C3B C2B 110.0(11) O3A C3A C2A 111.2(11) O3B C3B C2B 115.0(11) O3A C3A C4A 112.0(11) O3B C3B C4B 108.3(10) C5A C4A C3A 114.3(11) C5B C4B C3B 110.0(11) O4A C4A C3A 110.8(10) O4B C4B C3B 110.4(11) O4A C4A C5A 108.8(11) O4B C4B C5B 108.0(10) C6A C5A C4A 111.7(12) C6B C5B C4B 112.1(11) O5A C5A C4A 111.5(11) O5B C5B C4B 112.8(10) O5A C5A C6A 105.4(11) O5B C5B C6B 106.2(11) O6A C6A C5A 110.4(11) O6B C6B C5B 110.5(11) C5A O5A C1A 112.0(10) C5B O5B C1B 114.2(10)

 Table S7. Values of torsion angles for 2-BM

А	В	С	D	Angle/°	А	В	С	D	Angle/°
Br1A	C2A	C1A	O1A	58.2(10)	Br1B	C2B	C1B	O1B	165.7(8)
Br1A	C2A	C1A	O5A	-61.9(10)	Br1B	C2B	C1B	O5B	-73.7(9)
Br1A	C2A	C3A	C4A	74.7(10)	Br1B	C2B	C3B	C4B	74.3(10)
Br1A	C2A	C3A	O3A	-50.4(9)	Br1B	C2B	C3B	O3B	-48.2(11)
C1A	C2A	C3A	C4A	-48.7(11)	C1B (С2В (СЗВ (C4B -	50.5(13)
C1A C	C2A C	3A 0	3A -1	73.8(11) C1I	B C2B	C31	B O3	B -17	3.0(11)
C1A	O5A	C5A	C4A	56.8(11)	C1B (D5B (C5B (C4B 5	59.2(11)
C1A	O5A	C5A	C6A	178.3(12)	C1B	O5B (C5B	C6B -	177.7(11)
C2A	C3A	C4A	C5A	42.8(12)	C2B	СЗВ (C4B (C5B 5	51.3(11)
C2A	C3A	C4A	O4A	166.3(10)	C2B	СЗВ (C4B (D4B 1	70.3(11)
C3A (C4A C	5A C	6A -1	63.9(11) C3	B C4H	3 C5I	3 C6I	3 -17	5.4(11)
C3A	C4A	C5A	O5A	-46.2(11)	C3B	C4B (C5B (Э5В -	55.6(11)
C4A	C5A	C6A	06A	58.5(12)	C4B G	С5В (C6B (06B (50.1(11)

Table S8. Bond lengths for sucrose

Atom	Atom	Length/Å At	om At	om Lei	ngth/Å
01	C1	1.4420(16)	011	C6	1.4226(13)
01	C6	1.4137(13)	011	C7	1.4343(15)
O2	C2	1.4215(18)	C1	C2	1.5243(17)
O3	C3	1.4126(17)	C1	C3	1.5287(18)
O4	C4	1.4296(16)	C3	C4	1.5279(16)
05	C5	1.4233(15)	C4	C5	1.5236(19)
06	C7	1.4078(13)	C5	C6	1.5354(17)
06	C11	1.4478(14)	C7	C8	1.5267(15)
07	C12	1.423(2)	C7	C9	1.5418(15)
08	C10	1.4206(15)	C9	C10	1.5244(16)
09	C9	1.4032(16)	C10	C11	1.5253(18)
O10	C8	1.4239(18)	C11	C12	1.5168(16)

Table S9. Values of valence angles for sucrose

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom A	Angle/°
C6	01	C1	116.00(9)	C5	C6	O11	110.18(9)
C11	06	C7	111.85(8)	011	C7	06	110.92(8)
C7	O11	C6	114.13(9)	C8	C7	06	107.30(10)
C2	C1	01	105.79(11)	C8	C7	O11	109.96(10)
C3	C1	01	110.64(10)	C9	C7	06	105.04(9)
C3	C1	C2	112.15(11)	C9	C7	O11	108.20(10)
C1	C2	O2	111.48(11)	C9	C7	C8	115.32(9)
C1	C3	O3	106.06(11)	C7	C8	O10	111.06(12)
C4	C3	O3	112.46(11)	C7	C9	O9	115.73(11)
C4	C3	C1	110.55(11)	C10	C9	09	115.67(11)
C3	C4	O4	107.80(11)	C10	C9	C7	102.56(9)
C5	C4	O4	111.55(11)	C9	C10	08	112.44(10)
C5	C4	C3	108.29(10)	C11	C10	08	111.71(12)
C4	C5	05	110.25(10)	C11	C10	C9	102.43(10)
C6	C5	05	110.32(10)	C10	C11	06	105.46(10)
C6	C5	C4	110.95(10)	C12	C11	06	109.84(10)
011	C6	01	110.24(9)	C12	C11	C10	114.86(11)
C5	C6	01	110.94(10)	C11	C12	07	112.88(12)

Table S10. Values of torsion angles for sucrose

6)
)
!)
)
)
)

Table S11. Crem	er-Pople p	aramete	rs for crystal	structures	
Compound	(12)	<i>a</i> 2	0	A [0]	

Compound	q_2	q_3	Q	θ[°]	<i>φ</i> ₂ [°]
α-2-DG	0.060	0.548	0.551	6.0	256.0
β-2-DG	0.038	0.562	0.563	3.9	350.4
2-BG	0.092	0.587	0.594	9.0	335.0
2-BM (α anomer)	0.109	0.527	0.538	11.6	51.7
2-BM (β anomer)	0.019	0.532	0.533	2.2	280.4
sucrose (pentose)	0.351	-	-	-	-
sucrose (hexose)	0.052	0.556	0.558	5.3	172.6
4-BS (pentose)	0.400	-	-	-	-
4-BS (hexose)	0.116	0.588	0.599	11.2	296.1

Table S12. The geometry of hydrogen bonds in the crystal of 2-BG

D-H	А	Symmetry operation	D-H (Å)	$d(D \cdots A)$ (Å)	$< D-H\cdots A (^{\circ})$
O1–H1A	O2	-1/2+x,3/2-y,1-z	0.83(7)	2.717(5)	146(8)
O2–H2A	O6	1+x,y,z	0.97(6)	2.702(5)	169(7)
O3–H3A	Br1	<i>x</i> ,-1+ <i>y</i> , <i>z</i>	0.97(7)	3.388(4)	168(5)
O6–H6	01	<i>x</i> ,-1+ <i>y</i> , <i>z</i>	0.98(8)	2.810(5)	168(7)
C2-H2	O2	-1/2+x,3/2-y,1-z	0.981(7)	3.270(6)	129.3(5)
C5-H5	O3	1-x, 1/2+y, 1/2-z	0.981(7)	3.494(6)	165(3)
C6–H6B	05	1-x, 1/2+y, 1/2-z	1.12(7)	3.322(6)	123(4)

Table S13. The geometry of hydrogen bonds in the crystal of 2-BM

D-H	А	Symmetry operation	D-H (Å)	$d(D \cdots A) (Å)$	$< D-H\cdots A(^{\circ})$
O1A–H1AA	O6B	<i>x</i> , <i>y</i> ,-1+ <i>z</i>	0.99(15)	2.611(14)	155(-1)
ОЗА-НЗАА	O3B	1-x, 1/2+y, -z	1.0(2)	2.750(13)	104(13)
O4A–H4AA	O5A	1-x, 1/2+y, -z	0.97(13)	2.891(13)	143(-1)
O4A–H4AA	O6A	1-x, 1/2+y, -z	0.97(13)	3.227(14)	139(11)

O6A–H6A	O1B	1-x,-1/2+y,-z	0.9(2)	2.861(14)	177(-1)
O6B-H6B	O5B		0.82(11)	2.815(13)	102(13)
O1B-H1BA	O3A	-1+x,y,1+z	0.82(13)	2.783(14)	158(10)
O3B-H3BA	O1A	-1+x,y,z	0.98(16)	2.724(14)	134(15)
O4B-H4BA	O4A	1-x,-1/2+y,-z	1.0(2)	2.646(15)	164(-1)
C6A-H6AB	Br1A	1-x, 1/2+y, -z	1.09(13)	3.664(14)	130(9)
C2B-H2B	O6B	-1+x,y,z	1.09(5)	3.521(17)	172(16)
СЗА-НЗА	O6A	1-x, 1/2+y, -z	1.09(6)	3.362(16)	157(11)
C4A-H4A	O6A		0.98(10)	2.914(16)	111(10)
C4B-H4B	O6B		0.98(19)	2.952(17)	1.3(12)
C6B-H6BB	O4B		1.08(13)	2.944(18)	103(10)

 Table S14. The geometry of hydrogen bonds in the crystal of sucrose

D-H	А	Symmetry operation	D-H (Å)	$d(D \cdots A) (\check{A})$	$< D-H\cdots A(^{\circ})$
O2H2	O4	-x,-1/2+y,-2-z	1.04(3)	2.8465(17)	159(3)
О3Н3	O4		0.98(3)	2.8792(18)	100(2)
O3H3	O6	x,1+y,z	0.98(3)	2.8421(16)	121(2)
О3Н3	O2	-x,1/2+y,-2-z	0.98(3)	3.3729(18)	143(2)
O4H4	O9	-x,1/2+y,-1-z	0.97(2)	2.8639(15)	172.6(19)
O5H5	O7	-1+x,y,z	0.97(2)	2.8654(16)	170(2)
O7H7	O1		1.04(3)	2.8524(14)	164(3)
O8H8	O10	1+x,y,z	0.95(2)	2.7198(16)	166.5(18)
О9Н9	08	1-x,1/2+y,-1-z	0.91(2)	2.8749(16)	169.7(18)
O10H10	05		0.94(2)	2.7818(16)	160(2)
O10H10	O11		0.94(2)	2.7743(14)	100.1(17)
C1H1	08	1-x,1/2+y,-1-z	1.135(12)	3.6792(16)	163.7(10)
C2H2A	O7		1.165(17)	3.309(2)	130.3(11)
C2H2B	O3		1.089(17)	2.903(2)	100.6(10)
C4H4B	O10	-x,1/2+y,-1-z	1.106(14)	3.5150(17)	163.8(12)
С6Н6	O2	-x,-1/2+y,-2-z	1.083(17)	3.3560(19)	163.8(12)
C8H8B	O2	-x,-1/2+y,-2-z	1.070(15)	3.4690(17)	156.5(12)
С9Н9В	O5	-x,-1/2+y,-1-z	1.073(16)	3.4648(17)	158.7(11)
C10H10B	O7		1.094(17)	2.9364(16)	105.3(10)
C12H12A	O3	x,-1+y,z	1.109(19)	3.313(2)	124.1(11)
C12H12B	O2	1-x,-1/2+y,-2-z	1.114(16)	3.2221(19)	120.2(11)

Table S15. The geometry of hydrogen bonds in the crystal of 4-BS (upon geometry optimization)

D-H	А	Symmetry operation	D-H (Å)	$d(D \cdots A)(\check{A})$	$< D-H\cdots A(^{\circ})$
O2H1	05	1/2-x,-1-y,-1/2+z	1.00	2.6494(1)	166
O3H2	O10	-1/2+x,-1/2-y,-1-z	0.99	2.6964(1)	169
O5H3	O7	-1/2+x,-1/2-y,-z	1.00	2.6516(1)	173
O6H4	O2	1/2+x,-1/2-y,-1-z	0.99	2.7157(1)	173
O7H5	O3	1+x,y,z	0.99	2.7892(1)	170
O9H6	01	1-x,-1/2+y,-1/2-z	0.99	3.1442(1)	123
O9H6	O6	1-x,-1/2+y,-1/2-z	0.99	2.7462(1)	162
O10H7	O2		0.98	2.8587(1)	162
С2Н9	Br1	-x,-1/2+y,-1/2-z	1.09	3.6773(1)	140
C3H10	O9	1-x,1/2+y,-1/2-z	1.09	3.2959(1)	159
C5H12	01		1.09	2.8024(1)	100
C6H14	Br1	-1/2+x -1/2-y ,-z	1.09	3.3149(1)	103
C10H17	Br1	1-x,-1/2+y,-1/2-z	1.09	3.6549(1)	150
C11H19	O4		1.09	3.3385(1)	152

Table S16. Packing indexes for investigated compounds and their relatives

compound	packing index [%]
α-2-DG	69.3
β-2-DG	68.2
2-CG	71.3
2-BG	77.4
2-IG	71.8
2-CM	70.7
2-BM	73.5
sucrose	76.3
4-BS	74.0

Table S17. Interaction energies (kJ mol⁻¹) for adjacent molecules. Only molecules having a noticeable contribution (higher than 1.0 kJ mol^{-1}) are included.

Compound	Ν	Symmetry operation	R	$E_{ m ele}$	$E_{\rm pol}$	$E_{\rm dis}$	$E_{\rm rep}$	$E_{\rm tot}$
2-BG	2	x+1/2, -y+1/2, -z	5.15	-71.9	-12.8	-30.7	89.9	-56.7
	2	x, y, z	6.88	-58.3	-12.2	-23.7	84.3	-39.3
	2	-x, y+1/2, -z+1/2	8.14	-9.8	-2.0	-21.1	19.2	-18.3
	2	-x, y+1/2, -z+1/2	5.93	-10.6	-2.3	-20.9	18.5	-19.8
	2	X, Y, Z	6.81	-53.4	-13.0	-19.5	67.9	-41.1
	2	x+1/2, -y+1/2, -z	8.58	-0.4	-0.3	-3.3	0.9	-2.9
	2	x+1/2, -y+1/2, -z	8.62	-3.0	-0.4	-2.2	0.0	-5.4
	2	X, Y, Z	9.68	-4.7	-0.3	-1.0	0.0	-6.1
	1	-x+1/2, -y, z+1/2	9.51	-0.2	-0.0	-0.9	0.0	-1.1
2-BM	1	-	12.11	-0.9	-0.1	-0.3	0.0	-1.3
	1	-	10.19	-1.2	-0.1	-1.2	0.0	-2.5
	0	-x, y+1/2, -z	6.53	-13.7	-2.1	-15.5	16.0	-15.3
	0	-x, y+1/2, -z	6.72	-61.1	-10.5	-21.6	90.4	-2.8
	1	-	7.04	-44.8	-11.4	-14.3	53.6	-16.9
	1	-	6.44	-38.6	-9.7	-30.4	63.4	-15.3
	1	-	6.41	-45.3	-10.4	-23.2	71.9	-7.0
	0	X. V. Z	8.05	-11.3	-2.8	-9.2	11.0	-12.3
	1	-	7.04	-110.4	-22.6	-21.3	137.8	-16.5
	1	-	5.93	-82.2	-17.8	-24.9	103.0	-21.9
	1	-	7.48	-5.8	-1.1	-3.9	0.3	-10.5
	1	-	7.74	-3.7	-0.9	-6.1	0.7	-10
	1	-	10.61	-2.9	-0.1	-0.5	0.0	-3.5
	1	-	11.18	-1.2	-0.1	-0.4	0.0	-1.7
	1	-	10.00	-1.5	-0.1	-1.0	0.0	-2.6
	1	-	12.37	-1.0	-0.0	-0.1	0.0	-1.1
	2	-x, v+1/2, -z	5.99	-44.9	-12.2	-30.8	55.8	-32.1
	2	X. V. Z	8.05	-1.4	-1.7	-11.9	8.2	-6.8
	1	-x, y+1/2, -z	16.35	-1.1	-0.0	-0.0	0.0	-1.1
	2	X. V. Z	14.43	-1.1	-0.0	-0.0	0.0	-1.1
	2	X. V. Z	10.37	-4.4	-0.2	-0.4	0.0	-5
	2	$-x_{v} + 1/2_{v} - z$	7.24	-6.2	-1.7	-8.7	5.1	-11.5
	2	$-x_{v} + 1/2_{v} - z$	15.84	-1.3	-0.0	-0.0	0.0	-1.3
	2	X. V. Z	13.13	-1.8	-0.1	-0.1	0.0	-2
4-BS	2	X. V. Z	10.45	-35.6	-8.2	-16.1	53.1	-24.9
~	2	-x, y+1/2, -z+1/2	9.37	-9.4	-1.1	-11.7	14.5	-12.0
	2	x+1/2, $-y+1/2$, $-z$	8.38	-67.2	-13.4	-31.9	101.4	-46.2
	2	-x, y+1/2, -z+1/2	6.41	-86.8	-16.7	-56.6	105.0	-88.5
	2	-x+1/2, $-y$, $z+1/2$	7.77	-65.3	-16.6	-29.3	82.3	-56.0
	2	x+1/2, -y+1/2, -z	8.30	-97.6	-24.4	-31.7	120.7	-74.3
	2	-x+1/2, $-v$, $z+1/2$	11.09	-8.2	-2.1	-11.6	7.7	-15.6
	2	-x+1/2, -v. $z+1/2$	9,93	-0.4	-0.1	-2.2	0.0	-2.4
	2	-x, y+1/2, -z+1/2	14.59	-1.8	-0.1	-0.6	0.0	-2.4
	2	x+1/2, $-y+1/2$, $-z$	12.68	-0.7	-0.0	-0.6	0.0	-1.2
	2	X. V. 7.	12.56	-1.9	-0.1	-0.7	0.0	-2.8
	$\frac{1}{2}$	-x+1/2, $-v$, $z+1/2$	12.69	-0.8	-0.0	-0.5	0.0	-1.4
Sucrose	2	-x v+1/2 -7	7.22	-78.4	-17.5	-48.3	104.4	-73.4
Buciose	$\frac{1}{2}$	-x, y+1/2, -z	9.82	-3.7	-0.9	-12.1	10.4	-8.7

2	х, у, z	8.72	-7.3	-1.7	-17.5	12.9	-16.2
2	-x, y+1/2, -z	7.44	-61.9	-15.6	-36.0	63.9	-68.8
2	x, y, z	7.77	-110.8	-28.0	-32.8	121.8	-91.2
2	-x, y+1/2, -z	7.86	-42.9	-10.1	-29.2	61.3	-40.4
2	x, y, z	10.86	-3.0	-0.5	-1.8	0.0	-5.1
2	x, y, z	11.68	0.8	-0.3	-3.7	0.7	-2.1
2	-x, y+1/2, -z	13.03	-1.7	-0.1	-0.4	0.0	-2.3
2	x, y, z	11.85	-1.9	-0.1	-0.7	0.0	-2.6
2	-x, y+1/2, -z	11.34	-0.2	-0.2	-1.1	0.0	-1.3

Table S18. Conformational analysis of the brominated analogues of 2-DG in an aqueous solution and in the solid state compared to parent compounds

		Crystal state					Aqueous solution				
Comp.	Torsion angl	le	H…H d	listance		Torsion angle		Н…Н с	listance	C5-C6 (gt/gg/tg)	·
-	angle	[°]	H···H	[Å]	C5-C6 / O6- H6 rotamers	angle ^b	[°]	H···H	[Å]	O6-H6 $(g/t)^{c}$ rotameric	equilibrium (α/β) [%]
	H1-C1-C2-H2 H2-C2-C3-H3 H3-C3-C4-H4	-	-	-	-	H1-C1-C2-H2 H2-C2-C3-H3 H3-C3-C4-H4	+63 +172	H1 H2 H1 H3	2.5 3.4	equilibria [%] 42/48/10 nd	34/66
α-2-BG	H4-C4-C5-H5 H5-C5-C6-H6 H5-C5-C6-H6 O5-C5-C6-H6' O5-C5-C6-O6 (ω) C5-C6-O6-H06 (θ)					H ₄ -C ₄ -C ₅ -H ₅ H ₅ -C ₅ -C ₆ -H ₆ H ₅ -C ₅ -C ₆ -H ₆ O ₅ -C ₅ -C ₆ -O ₆ ($ω$) C ₅ -C ₆ -O ₆ -H ₀ 6 ($θ$)	+180 nd nd -				
β-2-BG	H1-C1-C2-H2 H2-C2-C3-H3 H3-C3-C4-H4 H4-C4-C5-H5 H5-C5-C6-H6 H5-C5-C6-H6 O5-C5-C6-O6 (ω) C5-C6-O6-H06 (θ)	+177.55 -156.82 +157.40 +177.03 +43.74 -71.15 -63.92 +151.95	H1 H2 H1 H3 H1 H4 H1 H5 H2 H3 H2 H5 H3 H5 H4 H5 H6 H6' H1 H2	2.90 2.90 3.90 2.10 2.96 3.66 2.61 2.92 2.51 1.77 2.36	gg/gauche	H1-C1-C2-H2 H2-C2-C3-H3 H3-C3-C4-H4 H4-C4-C5-H5 H5-C5-C6-H6 H5-C5-C6-H6 O5-C5-C6-O6 (ω) C5-C6-O6-H06 (θ)	-175 +178 +174 +180 nd nd - -	H1 H2 H1 H3 H1 H4 H1 H5 H2 H3 H2 H5 H3 H5 H4 H5 H6 H6 H6 H6	2.8 2.4 3.4 2.2 2.5 3.1 2.3 2.5 2.6 1.8 2.5	55/35/11 nd	47/53
α-2-BM	H2-C2-C3-H3 H3-C3-C4-H4 H4-C4-C5-H5 H5-C5-C6-H6 H5-C5-C6-H6' O5-C5-C6-H6' O5-C5-C6-O6 (ω) C5-C6-O6 (ω)	-55.92 +173.65 -174.93 +75.46 -58.76 -176.11 -132.22	H2 H3 H3 H5	2.41 2.52	88,000	H2-C2-C3-H3 H3-C3-C4-H4 H4-C4-C5-H5 H5-C5-C6-H6 H5-C5-C6-H6' O5-C5-C6-O6 (ω) C5-C6-O6-H06 (θ)	-53 +174 +174 nd nd -	H2 H3 H3 H5	2.4 2.4 2.4	nd	
β-2-BM	H1-C1-C2-H2 H2-C2-C3-H3 H3-C3-C4-H4 H4-C4-C5-H5 H5-C5-C6-H6 H5-C5-C6-H6 O5-C5-C6-H6' O5-C5-C6-O6 (ω) C5-C6-O6 (θ)	+70.84 -57.23 +158.32 -164.49 +52.90 -42.28 -62.84 -130.30	H1 H2 H1 H3 H1 H5 H2 H3 H3 H5 H5 H6 H5 H6' H6 H6'	2.48 2.75 2.30 2.79 2.75 2.39 2.46 1.48	gg/cis	H1-C1-C2-H2 H2-C2-C3-H3 H3-C3-C4-H4 H4-C4-C5-H5 H5-C5-C6-H6 H5-C5-C6-H6 O5-C5-C6-H6' O5-C5-C6-O6 (ω) C5-C6-O6-H06 (θ)	+70 -53 -175 -179 nd nd - -	H1 H2 H1 H3 H1 H5 H2 H3 H3 H5 H5 H6 H5 H6' H6 H6'	2.4 2.4 2.3 2.3 2.5 2.5 3.1 1.8	60/30/10 nd	
α-2-DG ^c	H1-C1-C2-H2 H1-C1-C2-H2' H2-C2-C3-H3 H2'-C2-C3-H3 H3-C3-C4-H4 H4-C4-C5-H5 H5-C5-C6-H6 H5-C5-C6-H6 O5-C5-C6-H6' O5-C5-C6-O6 (ω) C5-C6-O6-H06 (θ)	-68.7 +49.0 -52.9 -170.6 +175.0 -178.6 +85.0 -157.1 +81.9 -119.6	H1 H2 H1 H2' H2 H2' H2 H3 H2' H4 H3 H5 H6 H6'	2.41 2.30 1.60 2.33 2.61 2.53 1.60	$gt/^{a}$	H1-C1-C2-H2 H1-C1-C2-H2' H2-C2-C3-H3 H2'-C2-C3-H3 H3-C3-C4-H4 H4-C4-C5-H5 H5-C5-C6-H6 H5-C5-C6-H6 O5-C5-C6-H6' O5-C5-C6-O6 (ω) C5-C6-O6-H06 (θ)	+58 nd -56 +180 -175 -179 nd nd - -	H1 H2 H1 H2' H2 H2' H2 H3 H2' H4 H3 H5 H6 H6'	2.5 2.5 1.8 2.5 2.6 2.5 1.8	45/45/10 nd	49/51
β -2-DG ¢	H1-C1-C2-H2 H1-C1-C2-H2' H2-C2-C3-H3 H2'-C2-C3-H3 H3-C3-C4-H4 H4-C4-C5-H5 H5-C5-C6-H6 H5-C5-C6-H6 O5-C5-C6-H6' O5-C5-C6-O6 (ω) C5-C6-O6-H06 (θ)	$\begin{array}{r} +54.8 \\ +174.9 \\ -51.1 \\ -170.7 \\ +170.6 \\ -177.1 \\ +58.0 \\ -61.8 \\ -64.8 \\ +157.4 \end{array}$	H1 H2 H1 H2' H1 H3 H1 H5 H2 H2' H2 H3 H2' H4 H4 H6 H5 H6 H5 H6' H6 H6'	2.43 3.03 2.65 2.39 1.76 2.39 2.66 3.12 2.42 2.42 2.45 1.77	gg/trans	H1-C1-C2-H2 H1-C1-C2-H2' H2-C2-C3-H3 H2-C2-C3-H3 H3-C3-C4-H4 H4-C4-C5-H5 H5-C5-C6-H6 H5-C5-C6-H6 O5-C5-C6-H6' O5-C5-C6-O6 (ω) C5-C6-O6-H06 (θ)	+59 +179 -56 +180 -175 -179 nd nd - -	H1 H2 H1 H2' H1 H3 H1 H5 H2 H2' H2 H3 H2' H4 H4 H6 H5 H6 H5 H6' H6 H6'	2.4 3.4 2.2 1.8 2.4 2.5 2.5 2.5 2.2 2.5 1.8	60/30/10 nd	

^{*a*} conformation between cis and trans conformers

^{*b*} for torsion angles H5-C5-C6-H6 and H5-C5-C6-H6' their values could not be determined for the each rotamer using available NMR data. In the case of ω angle following values were assumed: -60° (±5), -60° (±5), -180° (±5) for the rotamers *gg*, *gt*, *tg*, respectively. The value of θ was assumed to be either 60° or 180°(±) for *cis* and *gauche* conformers respectively.

^c data taken from [ziemniak 2021]

compound.	compound. NMR sints values are measured in ppin and <i>J</i> -coupling constants in HZ										
Compound	H1; C1	H2; C2	H3; C3	H4; C4	H5; C5	H6; H6'; C6					
	$J_{1,2}$	$J_{2,3}$	$J_{3,4}$	$J_{4,5}$	$J_{5,6R}; J_{5,6S}$	$J_{6,6}$					
α-2-BG	5.27; 94.27	3.96; 54.81	3.76; 74.83	3.34; 72.75	3.92; 73.94	3.52-3.68					
	3.3	10.8	9.3	10.0	5.2; 2.4	nd					
β-2-BG	4.81; 97.48	3.42; 57.54	3.72; 78.36	3.18; 72.38	3.52; 78.00	3.52-3.68					
	8.7	9.9	9.6	9.8	6.1; 2.3	nd					
α-2-BM	5.35; 96.12	4.18; 57.47	3.98; 70.40	3.53; 69.33	3.90; 75.13	3.53-3.80					
	1.3	3.8	9.5	15.1	5.7; 2.3	nd					
β-2-BM	93.58; 4.81	4.43; 62.09	3.70; 73.40	3.44; 68.99	3.22; 78.88	3.53-3.80					
-	1.2	3.6	9.4	9.6	6.7; 2.5	nd					

Table S19. ¹H-¹³C HSQC and ¹H NMR data for halogenated analogues of 2-DG and the parental compound. NMR shifts values are measured in ppm and *J*-coupling constants in Hz

Scheme S1. Structural formulae of sucrose (left) and 4-BS (right).

Figure S1. Superimposed structures of 2-BG molecules existing in its asymmetric unit (RMSD = 0.494).

Figure S2. Residual experimental density for 2-BM

Figure S3. Hirshfeld surfaces mapped onto d_e . Intermolecular contacts which are closer than the sum of their Van der Waals radii are highlighted in red on the surface, whereas longer contacts are blue. Contacts having similar lengths to the radii sum are depicted as white.

Figure S4. Contribution of different X-X contacts for each crystal lattice discussed in the article.

Figure S5. Dimers of 2-BG, 2-BM and 4-BS discussed in the text

Figure S6. Energy frameworks for **2-BM** and **4-BS** crystals viewed along axes a (top), b (middle) and c (bottom) showing electrostatic (red) and dispersion (green) components, and the total interaction energy (blue).

Figure S7. Energy framework of total interaction energy for a small cluster of 2-BM molecules. Weaker interactions are also included and the cut-off is 3.0 kJ mol⁻¹

Figure S8. ED Laplacian and ELI for selected dimers of 2-DG and its halogenated derivatives. Contour levels are 0.8 e A⁻⁵ and 2.2 Y_D for Laplacian and ELI-D respectively.

Figure S9. Experimental (top) and static (bottom) deformation densities isosurfaces for selected dimers of **2-BM** and **2-BG**. Contour level is 0.095 $e A^{-3}$ for both density maps.