NS3 helicase inhibitory potential of the marine sponge Spongia irregularis

Enas Reda Abdelaleem^{a, ¢}, Mamdouh Nabil Samy^{a, ¢}, Taha F. S. Ali^b, Muhamad Mustafa^c, Mahmoud A. A. Ibrahim^d, Gerhard Bringmann^e, Safwat A. Ahmed^f, Usama Ramadan Abdelmohsen^{a,g,*}, Samar Yehia Desoukey^a

^aDepartment of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519Minia, Egypt.
 ^bDepartment of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.
 ^cMedicinal Chemistry Department, Faculty of Pharmacy, Deraya University, New Minia 61111, Egypt.
 ^dComputational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, 61519Minia, Egypt.
 ^eInstitute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
 ^fDepartment of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
 ^gDepartment of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia 61111, Egypt.
 * Corresponding author, ⁶ Equal contribution.

N.	Compound	Accurat	Mode	m/z	R _t	Structure	Source	Reference
		e mass						
5	19,20 Dihydroxyspongia- 13(16),14-diene	318.2195	+	319.2233	3.40	HO H H HO CH ₃	Spongia Sp.	1
6	3β-Acetoxyspongia-13(16),14- diene	344.2351	-	343.2258	2.32		<i>Spongia</i> Sp.	2
7	3α-Acetoxyspongia-13(16),14- diene						<i>Spongia</i> Sp.	
8	Ceylonamide H	345.2304	+	346.2391	2.33	N-CH ₃	Spongia Sp.	3
9	5-Epi-isospongiaquinone	358.2114	-	357.2039	2.86	OCH ₃ O H O H O H	Spongia hispida	4

Table S1: List of secondary metabolites annotated from the ethyl acetate fraction *of Spongia irregularis*.

10	Spongiacysteine	363.2079	_	362.2035	2.95		<i>Spongia</i> Sp.	5
11	Rhopaloic acid c	372.2664	+	373.2638	3.03		Hippospon gia sp.	6
12	1,4,44-Trihydroxy-2- octaprenylbenzene	670.5325	-	669.5264	3.28	CH HO	<i>Spongia</i> Sp.	7
13	Nakijiquinone E	713.4291	-	712.4287	3.27	HO HO COOCH3 HO HO HO HO HO H OH MIN H	Spongia Sp.	8
14	Nakijiquinone F					HO H	Spongia Sp.	

	Binding	Interaction pa	rameters		
Ligand	affinity	Interaction	AA Residue	δ(Å)	E
Liganu	(ΔG in				(Kcal/mol)
	Kcal/mol)				
Co-	-11.3	H-donor	Arg 1155	2.82	-4.6
crystallized		H-donor	His 1057	3.01	-7.5
ligand		H-donor	Ala 1157	2.88	-4.3
		H-acceptor	Gly 1137	3.00	-1.1
		H-acceptor	Gly 1137	3.02	-2.8
		H-acceptor	Ala 1157	2.95	-3.7
		Η- π	His 1057	3.68	-1.6
13	-7.0				

Table S2: Docking results of the top-ranked docking pose (Compound 13) with the activesite of HCV NS3 protease compared to the co-crystallized ligand.

Table S3: Docking results of the top-ranked docking pose (Compound 13) with HCVNS5B polymerase's active site compared to the co-crystallized ligand.

	Binding	Interaction parameters					
Ligand	affinity	Interaction	AA Residue	δ(Å)	E (Kcal/mol)		
Liganu	(ΔG in						
	Kcal/mol)						
Co-	-9.6	H-donor	Asp 318	2.71	-7.2		
crystallized		H-acceptor	Ser 556	3.11	-1.0		
ligand		H-acceptor	Asn 291	2.88	-3.5		
		Η- π	Met 414	4.77	-0.5		
13	-9.5	H-donor	Cys 366	2.61	-2.9		
		H-acceptor	Ser 367	2.85	-1.9		

	Binding Interaction parameters					
Ligand	affinity	Interaction	AA Residue	δ(Å)	E (Kcal/mol)	
Liganu	(ΔG in					
	Kcal/mol)					
Co-	-7.5	H-donor	Trp 501	2.81	-2.3	
crystallized		H-acceptor	Gly 255	2.91	-3.5	
ligand		H-acceptor	Gly 255	2.92	-4.6	
		H-acceptor	Thr 269	3.52	-1.9	
14	-7.4	H-donor	Asn 556	3.30	-0.2	
		H- acceptor	Trp 501	2.96	-1.7	
		Η- π	Trp 501	3.84	-0.4	
		Η- π	Trp 501	4.04	-0.4	
		Η- π	Trp 501	4.17	-0.9	

Table S4: Docking results of the top-ranked docking pose (Compound 14) with the active site of HCV Helicase compared to the co-crystallized ligand.

Table S5: Docking results of the top-ranked docking pose (Compound 14) with the active

 site of HCV Protease-Helicase allosteric site compared to the co-crystallized ligand.

	Binding affinity	Interaction p	arameters		
Ligand	(ΔG in Kcal/mol)	Interaction	AA Residue	δ(Å)	Е
					(Kcal/mol)
Co-	-9.0	H-donor	Asp 79	3.46	-0.7
crystallized		H-donor	Cys 525	3.00	-4.2
ligand		H-donor	H ₂ O (Glu	3.04	-5.3
		H-donor	628)	2.99	-1.1
		H-acceptor	Leu 517	2.97	-4.8
			Cys 525		
14	-10.1	H-donor	Asp 79	3.58	-0.3
		H-donor	Glu 628	3.70	-0.8
		π - Η	Val 524	4.47	-0.3

Molecule	Number of	Mwt	H-	H-bond	Number	LogP
	violotions	(g/mol)	bond	aaceptors	of	
	(Lipinski		donors		rotatable	
	rule)				Bonds	
1	0	193.21	1	3	0	0.06
2	0	116.07	2	4	0	-0.49
3	0	242.23	3	5	2	-0.61
4	0	118.14	1	1	0	1.60
5	0	318.45	2	3	2	3.53
6	0	344.49	0	3	2	4.75
7	0	344.49	0	3	2	4.69
8	0	345.48	1	3	1	3.23
9	0	358.47	1	4	3	3.84
10	0	363.51	3	5	13	2.03
11	0	372.54	1	3	11	2.03
12	1,	671.05	3	3	24	2.03
	Mwt>500					
13	2,	713.94	4	7	8	7.90
	Mwt>500,					
	LogP>5					
14	2,	713.94	4	7	8	7.81
	Mwt>500,					
	LogP>5					

 Table S6: Lipinski rule and drug-likeness of isolated and dereplicated compounds 1-14.

Table S7: Medicinal chemistry properties of isolated and dereplicated compounds as well as their ADME parameters.

Molecule	GI absorption	Bioavilability score	Pgp substrate	BBB permeation	Synthetic accessibility
1	High	0.55	No	No	2.34
2	High	0.55	No	No	2.79
3	High	0.55	No	No	3.64
4	High	0.55	No	Yes	1.17
5	High	0.55	Yes	Yes	4.91
6	High	0.55	No	Yes	4.92
7	High	0.55	No	Yes	4.92
8	High	0.85	Yes	Yes	4.66
9	High	0.85	No	Yes	5.10
10	High	0.55	Yes	No	4.60
11	High	0.56	Yes	No	4.60
12	High	0.56	Yes	No	4.60
13	Low	0.56	Yes	No	7.56
14	Low	0.56	Yes	No	7.56

Figure S1: IC₅₀ values of the anti-HCV activities of the total extract and two fractions of *S. irregularis*.

NMR spectroscopic analysis of compound (1-4):

1,3,7-Trimethylguanine (1):

¹H NMR (400 MHz, CDCl₃): δ = 7.54 (1H, s, H-8), 3.94 (3H, s, N₇- CH₃), 3.57 (3H, s, N₃- CH₃), 3.39 (3H, s, N₁- CH₃). ¹³C NMR (100 MHz, CDCl₃): δ = 155.9 (C-6), 152.2 (C-2), 148.9 (C-4), 141.7 (C-8), 108.1 (C-5), 34.3 (N₇- CH₃), 30.5 (N₃- CH₃), 28.5 (N₁- CH₃).

3,5-Dihydroxyfuran-2(5H)-one (2):

¹H NMR (400 MHz, DMSO-*d6*): δ= 10.96 (2H, br s, OH groups), 7.38 (1H, d, *J*=7.6 Hz, H-4), 5.44 (1H, d, *J*=7.6 Hz, H-5)

APT¹³C NMR (100 MHz, DMSO-*d6***):** δ= 165.0 (C-2), 152.2 (C-3), 142.9 (C-4), 100.9 (C-5).

Thymidine (3):

¹**H NMR (500 MHz, DMSO-***d6***):** δ= 11.27 (NH, br s), 7.69 (1H, d, *J*= 1.2 Hz, H-4), 6.15 (1H, t, *J*= 6.3 Hz,H-1'), 5.26 (1H,br s, 3' OH), 5.05 (1H,br s, 5' OH), 4.23 (1H, br s, H-3'), 3.75 (1H, m, H-4'), 3.53 (2H, m, H-5'), 2.02-2.08 (2H, m, H-2'), 1.77 (3H, d, *J*= 1.2 Hz, 5-CH₂).

¹³C NMR (125 MHz, DMSO-*d6*): δ = 164.3 (C-6), 150.9 (C-2), 136.6 (C-4), 109.8 (C-5), 87.3 (C-4'), 84.2 (C-1'), 70.9 (C-3'), 61.8 (C-5'), (C-2', Obscured by solvent), 12.7 (5-CH₂).

1H-indazole (4):

¹H NMR (400 MHz, CD₃OD): δ = 8.07 (1H, dd, *J*= 1.6, 6.3,H-4), 7.94 (1H,s, H-3), 7.43 (1H, dd, *J*= 1.5, 6.6, H-7), 7.18 (1H, td, *J*= 1.4, 7.1, H-5), 7.15 (1H, td, *J*= 1.4, 7.1, H6), 4.6 (NH) ¹³C NMR (100 MHz, CD₃OD): δ = 138.9 (C-7a), 133.9 (C-3), 128.4 (C-3a), 124.3 (C-6), 123.0 (C-4), 122.8 (C-5), 113.6 (C-7).

NMR spectroscopic analysis of compound (1):

1,3,7-Trimethylguanine

Figure S2: ¹H- NMR spectrum of compound 1 (CDCl₃, 400 MHz)

Figure S3: ¹³C- NMR spectrum of compound 1 (CDCl₃, 100 MHz)

Figure S7: Significant HMBC correlations of compound 1

NMR spectroscopic analysis of compound (2):

Figure S10: APT ¹³C- NMR spectrum of compound 2 (DMSO- d_6 , 100 MHz)

Figure S11: 3D structure of α -oriented proton of compound 2

NMĸ spectroscopic analysis of compound (3):

Thymidine

Figure S15: Expanded ¹H- NMR spectrum of compound 3 (DMSO-*d*₆, 500 MHz)

Figure S16: ¹³C- NMR spectrum of compound 3 (DMSO-*d*₆, 125 MHz)

Figure S18: HSQC spectrum of compound 3 (DMSO-d₆, 500 MHz)

Figure S19: HMBC spectrum of compound 3 (DMSO-*d*₆, 500 MHz)

NMR spectroscopic analysis of compound (4):

Figure S21: Expanded ¹H- NMR spectrum of compound 4 (CD₃OD, 400 MHz)

Figure S23: ¹³C- NMR spectrum of compound 4 (CD₃OD, 100 MHz)

Figure S25: Total ion chromatogram of the ethyl acetate fraction of Spongia irregularis.

Figure S26:(A) Comparison of modelled binding mode of the co-crystallized ligand (white stick model) and its superposed docking conformation (orange stick model) within the HCV NS3 protease active site (PDB code 6NZT) as predicted by MOE 2019.01. **(B)** 2D depiction of compound **13** binding interactions with the critical amino acid residue within the HCV NS3 protease active site (PDB code 6NZT) as predicted by MOE 2019.01.

Figure S27:(A) Comparison of modelled binding mode of the co-crystallized ligand (white stick model) and its superposed re-docked conformation (orange stick model) within the HCV NS5B polymerase active site (PDB code: 3H2L) as predicted by MOE 2019.01. (B) 2D depiction of compound 13 binding interactions with the critical amino acid residue within the HCV NS5B polymerase active site (PDB code: 3H2L) as predicted by MOE 2019.01.

Figure S28:(A) Comparison of modelled binding mode of the native ligand (white stick model) and its superposed re-docked conformation (orange stick model) within the HCV NS3 Helicase active site (PDB code 4OKS) as predicted by MOE 2019.01. **(B)** 2D depiction of compound **14** binding interactions with the critical amino acid residue within the HCV NS3 Helicase active site (PDB code 4OKS) as predicted by MOE 2019.01.

Figure S29:(A) Comparison of modelled binding mode of the native ligand (white stick model) and its superposed re-docked conformation (orange stick model) within the HCV NS3–NS4A protein, located between the protease and helicase domains of the HCV NS3 protein (PDB code: 4B73) as predicted by MOE 2019.01. **(B)** 2D depiction of compound **14** binding interactions with the critical amino acid residue within the HCV NS3–NS4A protein, located between the protease and helicase domains of the HCV NS3–NS4A.

References:

- 1. A. R. Carroll, J. Lamb, R. Moni, J. N. A. Hooper and R. J. Quinn, *J. Nat. Prod.*, 2008, **71**, 884-886.
- 2. L. P. Ponomarenko, A. I. Kalinovsky, S. S. Afiyatullov, M. A. Pushilin, A. V. Gerasimenko, V. B. Krasokhin and V. A. Stonik, *J. Nat. Prod.*, 2007, **70**, 1110-1113.
- 3. T. Jomori, A. Setiawan, M. Sasaoka and M. Arai, *Nat. Prod. Commun.*, 2019, **14**, 1-7.
- 4. S. Urban and R. J. Capon, *J. Nat. Prod.*, 1992, **55**, 1638-1642.
- 5. K. Kobayashi, H. Shimogawa, A. Sakakura, T. Teruya, K. Suenaga and H. Kigoshi, *Chem. Lett.*, 2004, **33**, 1262-1263.
- 6. K. S. Craig, D. E. Williams, I. Hollander, E. Frommer, R. Mallon, K. Collins, D. Wojciechowicz, A. Tahir, R. Van Soest and R. J. Andersen, *Tetrahedron Lett.*, 2002, **43**, 4801-4804.
- 7. I. Erdogan Orhan, J. Tanaka, T. Higa and B. Sener, *Nat. Prod. Sci.*, 1999, **5**, 177-180.
- 8. Y. Takahashi, T. Kubota and J. i. Kobayashi, *Biorg. Med. Chem.*, 2009, **17**, 2185-2188.