Supporting Information

An Electrochemical Sensor on the MOF/ZnO Composite for Highly Sensitive Detection of Cu (II) in river Water Sample

Zhenshan Li¹, Qi Li¹, Rong Jiang¹, Yan Qin¹, Yan Luo¹, Jinsong Li², Wei Kong², Zhiguo Yang², Chao Huang², Xin Qu², Tao Wang², Lin Cui¹, Gang Wang^{1,*}, Shengchao Yang^{1,2,*}, Zhiyong Liu^{1,*}, Xuhong Guo^{1,3}

¹ School of Chemistry and Chemical Engineering, Shihezi University/ Key Laboratory

of Green Process for Chemical Engineering / Key Laboratory for Chemical Materials

of Xinjiang Uygur Autonomous Region / Engineering Center for Chemical Materials of

Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China.

² Tianfu Energy Co., Ltd, City Key Laboratory of Energy Conservation and Environmental Protection, Xinjiang, 832000, China.

³ State Key Laboratory of Chemical Engineering, East China University of Science and

Technology, Shanghai 200237, P. R. China.

* Corresponding author: Gang Wang, Zhiyong Liu, Shengchao Yang.

Address: Beisi Road, Shihezi City, Xinjiang, 832003, P. R. China.

Tel: 0086-0993-2057276.

E-mail Address: <u>wanggang@shzu.edu.cn(</u>Gang Wang), <u>lzyongclin@sina.com</u>(Zhiyong Liu), <u>shengchao.yang@shzu.edu.cn</u> (Shengchao Yang).

Fig. S1. (a) N₂ adsorption–desorption isotherms of UiO-66-NH₂, ZnO and UiO-66-NH₂/ZnO (b) pore size distributions of UiO-66-NH₂, ZnO and UiO-66-NH₂/ZnO.

Table S1 BET surface areas and pore volumes of UiO-66-NH₂, ZnO and UiO-66-NH₂/ZnO

Samples	Specific surface area (m ² ·g ⁻¹)	Pore volume (cm ³ ·g $^{-1}$)
UiO-66-NH ₂	933.2075	0.6914
ZnO	9.4848	0.0425
UiO-66-NH ₂ /ZnO	433.4271	0.3004

Figure S2. CV curves of 3.0 μ M Cu(II) for bare GCE in 0.1 M HAc-NaAc solution (pH = 5.0) at different scan rates: 10-100 mV/s. (b) Plots of linear relationship between the anodic peak currents (I_{pa}) and the square root of scan (V^{1/2}).

Figure S3. CV curves of 3.0 μ M Cu(II) for UiO-66-NH₂/GCE in 0.1 M HAc-NaAc solution (pH = 5.0) at different scan rates: 10-100 mV/s. (b) Plots of linear relationship between the anodic peak currents (I_{pa}) and the square root of scan (V^{1/2}).

Figure S4. CV curves of 3.0 μ M Cu(II) for ZnO/GCE in 0.1 M HAc-NaAc solution (pH = 5.0) at different scan rates: 10-100 mV/s. (b) Plots of linear relationship between the anodic peak currents (I_{pa}) and the square root of

scan ($V^{1/2}$).