Supporting Information

An Electrochemical Sensor on the MOF/ZnO Composite for Highly Sensitive Detection of Cu (II) in river Water Sample

Zhenshan Li ${ }^{1}$, Qi Li ${ }^{1}$, Rong Jiang ${ }^{1}$, Yan Qin ${ }^{1}$, Yan Luo ${ }^{1}$, Jinsong Li ${ }^{2}$, Wei Kong ${ }^{2}$, Zhiguo Yang ${ }^{2}$, Chao Huang ${ }^{2}$, Xin Qu^{2}, Tao Wang ${ }^{2}$, Lin Cui ${ }^{1}$, Gang Wang ${ }^{1,{ }^{*}}$, Shengchao Yang ${ }^{1,2, *}$, Zhiyong Liu ${ }^{1, *}$, Xuhong Guo ${ }^{1,3}$
${ }^{1}$ School of Chemistry and Chemical Engineering, Shihezi University/ Key Laboratory
of Green Process for Chemical Engineering / Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region / Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China.
${ }^{2}$ Tianfu Energy Co., Ltd, City Key Laboratory of Energy Conservation and Environmental Protection, Xinjiang, 832000, China.
${ }^{3}$ State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.

* Corresponding author: Gang Wang, Zhiyong Liu, Shengchao Yang.

Address: Beisi Road, Shihezi City, Xinjiang, 832003, P. R. China.
Tel: 0086-0993-2057276.
E-mail Address: wanggang@shzu.edu.cn(Gang Wang), lzyongclin@sina.com(Zhiyong Liu), shengchao.yang@shzu.edu.cn (Shengchao Yang).

Fig. S1. (a) N_{2} adsorption-desorption isotherms of $\mathrm{UiO}-66-\mathrm{NH}_{2}, \mathrm{ZnO}$ and $\mathrm{UiO}-66-\mathrm{NH}_{2} / \mathrm{ZnO}$ (b) pore size distributions of UiO-66- $\mathrm{NH}_{2}, \mathrm{ZnO}$ and $\mathrm{UiO}-66-\mathrm{NH}_{2} / \mathrm{ZnO}$.

Table S1 BET surface areas and pore volumes of $\mathrm{UiO}-66-\mathrm{NH}_{2}, \mathrm{ZnO}$ and $\mathrm{UiO}-66-\mathrm{NH}_{2} / \mathrm{ZnO}$

Samples	Specific surface area $\left(\mathrm{m}^{2} \cdot \mathrm{~g}^{-1}\right)$	Pore volume $\left(\mathrm{cm}^{3} \cdot \mathrm{~g}^{-1}\right)$
$\mathrm{UiO}-66-\mathrm{NH}_{2}$	933.2075	0.6914
ZnO	9.4848	0.0425
$\mathrm{UiO}-66-\mathrm{NH}_{2} / \mathrm{ZnO}$	433.4271	0.3004

Figure S2. CV curves of $3.0 \mu \mathrm{MCu}(\mathrm{II})$ for bare GCE in $0.1 \mathrm{M} \mathrm{HAc}-\mathrm{NaAc}$ solution $(\mathrm{pH}=5.0)$ at different scan
rates: $10-100 \mathrm{mV} / \mathrm{s}$. (b) Plots of linear relationship between the anodic peak currents $\left(\mathrm{I}_{\mathrm{pa}}\right)$ and the square root of $\operatorname{scan}\left(\mathrm{V}^{1 / 2}\right)$.

Figure S3. CV curves of $3.0 \mu \mathrm{M} \mathrm{Cu}(\mathrm{II})$ for $\mathrm{UiO}-66-\mathrm{NH}_{2} / \mathrm{GCE}$ in $0.1 \mathrm{M} \mathrm{HAc}-\mathrm{NaAc}$ solution $(\mathrm{pH}=5.0)$ at different scan rates: $10-100 \mathrm{mV} / \mathrm{s}$. (b) Plots of linear relationship between the anodic peak currents $\left(\mathrm{I}_{\mathrm{pa}}\right)$ and the square root of $\operatorname{scan}\left(\mathrm{V}^{1 / 2}\right)$.

Figure S4. CV curves of $3.0 \mu \mathrm{M} \mathrm{Cu}(\mathrm{II})$ for $\mathrm{ZnO} / \mathrm{GCE}$ in $0.1 \mathrm{M} \mathrm{HAc-NaAc}$ solution $(\mathrm{pH}=5.0)$ at different scan
rates: $10-100 \mathrm{mV} / \mathrm{s}$. (b) Plots of linear relationship between the anodic peak currents $\left(\mathrm{I}_{\mathrm{pa}}\right)$ and the square root of $\operatorname{scan}\left(\mathrm{V}^{1 / 2}\right)$.

