Supporting Information

Synthesis of unprotected glyco-alkynones via molybdenumcatalyzed carbonylative Sonogashira cross-coupling reaction

Mariana P. Darbem,^a Henrique A. Esteves,^b Robert A. Burrow, ^cAntonio A. Soares-Paulino,^a Daniel C. Pimenta,^d Hélio A Stefani^a*

^a Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP - Brazil ^b Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom ^c Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, RS - Brazil ^d Instituto Butantã, São Paulo, SP – Brasil

1.	General methods		2
2.	Synthetic Procedures		3
	2.1	Synthesis of 2-iodoglycals	3
	2.2 reacti	General Procedure A: Molybdenum-catalyzed carbonylative Sonogashira on of 2-iodoglycals with terminal alkynes	4
	2.3	General Procedure B: Au-catalyzed cyclization of glyco-alkynones	5
3.	Cho	aracterization data	5
4.	¹ H	and ¹³ C NMR spectra	11

1. General methods

The solvents were purified by distillation or used without any purification in the case of HPLC-grade material. Acetonitrile HPLC-grade was used as received, 1.4-dioxane, toluene and THF were purified by distilling from sodium benzophenone ketyl. DIPEA and Et₃N were dried over CaH₂ and distilled before use. All reagents were purchased from Sigma-Aldrich, Alfa Aesar, Acros Organics, Oakwood or Fluorochem. Flash column chromatography was performed using silica gel 60 Å, 230-400 Mesh. Thin Laver Chromatography (TLC) was carried out using Merck TLC silica gel 60 F254 plates and for visualization, TLC plates were either placed under ultraviolet light, or stained with iodine or acidic vanillin solution. Compounds were all identified by usual analytical methods: ¹H NMR, ¹³C NMR, IR, and HR-MS (ESI). ¹H and ¹³C NMR spectra were measured in CDCl₃, CD₃OD or DMSO-d₆ in a Bruker DPX-300 instrument. Chemical shifts are referenced to the residual solvent signal. ¹H peaks are quoted to the nearest 0.01 Hz and ¹³C peaks are quoted to the nearest 0.1 Hz. Multiplicity of the signals is reported as follows: s (singlet), d (dublet), t (triplet), dd (doublet of doublets) m (multiplet). High-resolution mass spectra (HRMS) were recorded on a Shimadzu LCMS-TOF, using ESI with 50% solution of acetonitrile/H₂O and 0.1% formic acid as ionization method. Infrared spectra were acquired on an Agilent Technologies Cary 630 and melting points were measured using a Buchi B-545 melting point apparatus. Optical rotations were registered using a 200 mm cell on an Anton Paar MCP 200 polarimeter at 589 nm. [α] is reported in deg.cm³.g⁻¹.dm⁻¹ and c is expressed in $g/100 \text{ cm}^3$.

Single Crystal X-ray Study of 3a. A pale-yellow flat needle-like crystal of 3a, C₁₆H₁₆O₅, was mounted on a 150 µm Mitegen loop with polybutenes (Aldrich, average Mn ~920). A Bruker D8 Quest Pho-ton 100 diffractometer system equipped with a Incoatex IµS High Brilliance microfocus X ray tube (Cu K α , v= 1.54178 Å) and a Incoatec Montel two-dimensional X ray optics monochromator collected the X-ray diffraction images at room temperature (~24 °C) using 0.5° ϕ or ω scans to a maximum θ angle of 72.26° (0.81 Å resolution). Bruker Saint¹ was used to integrate the images using a narrow-frame algorithm and SA-DABS² was used to perform the multi-scan adsorption correction. The structure was solved using the intrinsic phasing method and refined on F2 with all data using the Bruker SHELXTL Software Package,^{3,4} using the monoclinic polar Sohncke space group P21, with Z = 4 (two molecules per asymmetric unit) for $C_{16}H_{16}O_5$. The polarity of the space group and absolute structure of the structure were determined by the resonance scattering effects. Table S1 contains the crystallographic information, derived parameters, atomic positions, thermal parameters, bond lengths and angles, torsion angles and hydrogen bond distances. Crystal Impact Diamond⁵ was used for the preparation of the Figure S1, showing the ORTEP style molecular structure diagrams, packing diagram, and hydrogen bonding networks. Complete data are available under CCDC deposition number 2085190, www.ccdc.cam.ac.uk.

Table S1. Sample and crystal data for **3a**.

3a
$C_{16}H_{16}O_5$
288.29 g mol ⁻¹
297(2) K
1.54178 Å

¹⁾ Bruker AXS Inc. SAINT+ Integration Engine, V8.40A, Madison, Wisconsin, USA. Bruker AXS Inc., Madison, Wisconsin, USA.: Madison, WI, U.S.A. **2018**.

²⁾ G. M. Sheldrick, SADABS, Version 2016/2. Bruker AXS Inc., Madison, Wisconsin, USA.: Madison, Wisconsin, USA. 2016.

Bruker AXS Inc. SHELXTL XT, Version 2014/5 - Crystal Structure Solution, Madi-son, Wisconsin, USA. Bruker AXS Inc.: Madison, WI, U.S.A. 2014.

⁴⁾ Bruker AXS Inc. SHELXTL XL, Version 2018/3 - Crystal Structure Refinement, Madison, Wisconsin, USA. Bruker AXS Inc.: Madison, WI, U.S.A. 2018.

⁵⁾ K. Brandenburg, H. Putz, Diamond, Version 3.2k - Crystal and Molecular Structure Visualization. Crystal Impact GbR: Bonn, Germany **2016**.

Figure S1. ORTEP-style molecular structure diagrams of 3a.

2. Synthetic Procedures

2.1 Synthesis of 2-iodoglycals

2-iodo-D-glucal (1a) and 2-iodo-D-xylal (1c) were synthesized following a published literature procedure.⁶ 2-iodo-L-arabinal (S2b) was synthesized following a similar procedure:

To a 25-mL flame-dried reaction vial were added 3,4-di-O-acetyl-L-arabinal (S1b) (400 mg, 2.0 mmol, 1.0 equiv.), *N*-iodosuccinimide (540 mg, 2.40 mmol, 1.2 equiv.), AgNO₃ (70 mg, 0.40 mmol, 20 mol%) and HPCL-grade MeCN (6 mL). The mixture was stirred at 70 °C for 2 h under N₂ atmosphere and then filtered through a pad of celite. The resulting solution was evaporated under reduced pressure and the residue was purified by flash column chromatography using a gradient mixture of EtOAc (0% to 20%) in hexanes. The resulting product was transferred to a reaction flask and then K₂CO₃ (0.1 equiv.) was added followed by MeOH (6 mL/mmol of 2-iodoglycal). The mixture was stirred at RT for 2 h and then the solvent was removed under reduced pressure. The

⁶ M. Malinowski, T. V. Tran, M.de Robichon, N. Lubin-Germain, A. Ferry, Adv. Synth. Catal. 2020, 362, 1184–1189.

residue was purified byflash column chromatography using DCM/MeOH as eluent (0 to 10%) to give the 2-iodo-L-arabinal (**1b**) as a white solid (413.5 mg, 1.70 mmol, 85% over two steps). **¹H NMR** (300 MHz, chloroform-d) δ 6.37 (s, 1H), 4.79 (d, J = 5.1 Hz, 1H), 4.63 (dd, J = 11.9, 4.3 Hz, 1H), 4.48 (t, J = 6.6 Hz, 1H), 3.83 (m, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 151.1, 77.2, 68.7, 66.1, 63.4, 62.7; **m.p**. 139 – 141°C; **IR** (v, cm⁻¹) = 3340, 2915, 1628, 1396, 1242, 1170, 1110, 1028; **HRMS** (ESI- TOF) calc. [C₅H₇O₃I + Na⁺], 264.9332, found 264.9335. [α]²⁰_D = -173.0 (0.1, CHCl₃)

2.2 General Procedure A: Molybdenum-catalyzed carbonylative Sonogashira reaction of 2-iodoglycals with terminal alkynes

To a 600-mL stainless steel reactor (**Figure S2**) were added a magnetic stir bar, the corresponding 2iodoglycal (0.5 mmol, 1.0 equiv.), $Mo(CO)_6$ (13 mg, 0.05 mmol, 10 mol%), Et_3N (139 µL, 1.00 mmol, 2.0 equiv.), 1,4-dioxane (5 mL) and the corresponding terminal alkyne (0.75 mmol, 1.5 equiv.). The reactor was sealed, evacuated and backfilled with CO three times and then pressurized with 4 bar of CO. The equipment was placed in an oil bath at 80 °C and the reaction was stirred for 16 h. The resulting mixture was evaporated under reduced pressure and the resulting residue was purified by flash column chromatography using DCM/MeOF

2.3 General Procedure B: Au-catalyzed cyclization of glyco-alkynones

To a 10-mL oven-dried reaction vial were added the correspondent glyco-alkynone (0.2 mmol, 1.0 equiv.) and AuCl₃ (6.0 mg, 10 mol%). The container was then sealed, evacuated and back-filled with N_2 three times followed by the addition dry 1,4-dioxane (2 mL). The mixture was stirred at 80 °C for 3 h in an oil bath and then, after cooling to RT, the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography using a mixture of DCM/MeOH (0 to 10%) as eluent.

3. Characterization data

1-((2*R*,3*S*,4*S*)-3,4-Dihydroxy-2-(hydroxymethyl)-3,4-dihydro-2*H*-pyran-5-yl)-3-(*p*-tolyl)-prop-2-yn-1-one (3a)

3a was synthesized according to General Procedure A using 2-iodoglucal (136 mg, 0.5 mmol, 1.0 equiv.) and 4-ethynyltoluene (95 μ L, 0.75 mmol, 1.5 equiv.) and was isolated as a white solid (112 mg, 0.39 mmol, 78%)..¹H NMR (300 MHz, CD₃OD) δ 8.12 (d, J = 1.7 Hz, 1H), 7.52 (d, J = 7.7 Hz, 2H), 7.26 (d, J = 7.8 Hz, 2H), 4.48 (dd, J = 3.7, 1.6 Hz, 1H), 4.35 (s, 1H), 4.06 – 3.64 (m, 3H), 2.39 (s, 3H).¹³C NMR (75 MHz, CD₃OD) δ 178.6, 163.5, 142.7, 133.8, 130.6, 120.2, 118.2, 91.7, 85.8, 83.7, 68.9, 63.7, 62.0, 21.7; m.p. 134–136°C; IR (υ , cm⁻¹) 3227, 2820, 2756, 2125, 1562, 1270, 1177, 1156, 1032, 987, 789; HRMS (ESI-TOF) calc. [C₁₆H₁₆O₅Na⁺], 311.0890, found (0.1, CHCl₃).

311.0894. $[\alpha]^{20}_{D} = +15.0 (0.1, \text{CHCl}_3).$

1-((2*R*,3*S*,4*S*)-3,4-Dihydroxy-2-(hydroxymethyl)-3,4-dihydro-2H-pyran-5-yl)-3-phenylprop-2-yn-1-one (3b)

3b was synthesized according to General Procedure A using 2-iodoglucal (136 mg, 0.500 mmol, 1.0 equiv.) and phenylacetylene (82 µL, 0.75 mmol, 1.5 equiv.) and was isolated as a yellow solid (71 mg, 0.26 mmol, 52%). ¹H NMR (300 MHz, DMSO- d_6) δ 8.10 (s, 1H), 7.68 (d, J = 7.2 Hz, 2H), 7.49 (m, 3H), 5.30 (d, J = 17.9 Hz, 2H), 4.98 (s, 1H), 4.33 (s, 2H), 3.86 (s, 1H), 3.82 – 3.71 (m, 1H), 3.71 – 3.57 (m, 1H).¹³C NMR (75 MHz, DMSO- d_6) δ 175.7, 161.5, 132.6, 130.6, 128.9, 119.5, 119.0, 88.5, 85.5, 83.0, 66.8, 60.8, 60.2; m.p. 112 cm⁻¹) = 3298 2853 2129 1557 1443 1272 1160 994 735 670 HRMS (FSL TOF)

-114 °C; IR (v, cm⁻¹) = 3298, 2853, 2129, 1557, 1443, 1272, 1160, 994, 735, 670. HRMS (ESI-TOF) calc.[C₁₅H₁₄O₅Na⁺]297.0733,found297.0733; [α]²⁰_D = +24.0 (0.1, CHCl₃).

1-((2*R*,3*S*,4*S*)-3,4-Dihydroxy-2-(hydroxymethyl)-3,4-dihydro-2*H*-pyran-5-yl)-3-(4-pentylphenyl)prop-2-yn-1-one (3c)

3cwas synthesized according to General Procedure A using 2-iodoglucal (136 mg, 0.500 mmol, 1.0 equiv.) and 1-ethynyl-4-pentylbenzene (146 μ L, 0.750 mmol, 1.5 equiv.) and was isolated as a yellow solid (59 mg, 0.17 mmol, 34%). ¹H NMR (300 MHz, CD₃OD) δ 8.20 (s, 1H), 7.62 (d, *J* = 7.7 Hz, 2H), 7.34 (d, *J* = 7.3 Hz, 2H), 4.59 – 4.54 (m, 1H), 4.43 (s, 1H), 4.07 – 3.85 (m, 3H), 3.41 (d, *J* = 11.1 Hz, 2H), 2.72 (d, *J* = 7.8 Hz, 2H), 1.71 (t, *J* = 7.4 Hz, 2H), 1.47 – 1.38 (m, 4H), 0.98 (t, *J* = 6.6 Hz, 3H); ¹³C NMR (75 MHz, MeOD) δ 178.6, 163.5, 147.6, 133.9,

130.0, 120.2, 118.5, 91.7, 85.8, 83.7, 68.9, 63.8, 62.0, 36.9, 32.5, 32.0, 23.5, 14.3; m.p. 154 - 155 °C; IR (υ , cm⁻¹) = 3210, 2842 2769, 2130, 1568, 1529, 1410, 1215, 1160, 960; HRMS (ESI- TOF) calc. [$C_{20}H_{24}O_5 + H^+$] 345.1697, found 345.1699; [α]²⁰_D = +36.0(0.1, CHCl₃).

1-((2R,3S,4S)-3,4-Dihydroxy-2-(hydroxymethyl)-3,4-dihydro-2H-pyran-5-yl)-3-(4methoxyphenyl)prop-2-yn-1-one (3d)

3d was synthesized according to General Procedure A using 2-iodoglucal (136 mg, 0.5 mmol, 1.0 equiv.) and 4-ethynylanisole (97 µL, 0.75 mmol, 1.5 equiv.) and was isolated as a yellow solid (132 mg, 0.435 mmol, 87%).¹H NMR (300 MHz, DMSO-d₆) δ 8.05 (d, J = 2.5 Hz, 1H), 7.65 (d, J = 6.3 Hz, 2H), 7.18 - 6.92 (m, 2H), 5.39 - 5.11 (m, 2H), 7.18 - 6.92 (m, 2H), 5.39 - 5.11 (m, 2H), 7.18 - 6.92 (m, 2H), 5.39 - 5.11 (m, 2H), 7.18 - 6.92 (m, 2H), 5.39 - 5.11 (m, 2H), 7.18 - 6.92 (m, 2H), 5.39 - 5.11 (m, 2H), 7.18 - 6.92 (m, 2H), 5.39 - 5.11 (m, 2H), 7.18 - 6.92 (m, 2H), 5.39 - 5.11 (m, 2H), 7.18 - 6.92 (m, 2H), 5.39 - 5.11 (m, 2H), 7.18 - 6.92 (m, 2H), 5.39 - 5.11 (m, 2H), 7.18 - 6.92 (m, 2H), 5.39 - 5.11 (m, 2H), 7.18 - 6.92 (m, 2H), 5.39 - 5.11 (m, 2H), 7.18 - 6.92 (m,4.93 (s, 1H), 4.56 – 4.13 (m, 2H), 3.81 (d, J = 2.4 Hz, 4H), 3.73 (d, J = 5.1 Hz, 1H), 3.66 - 3.56 (m, 1H). ¹³C NMR (75 MHz, DMSO-*d*₆) & 176.3, 161.6, 161.5, 135.2, 119.4, 115.1, 111.7, 89.9, 85.6, 83.4, 67.3, 61.3, 60.6, 55.9; m.p. 162 – 164°C; IR (v, cm⁻¹) =

3227, 2834, 2747, 2117, 1549, 1534, 1460, 1253, 1212, 1156, 808. HRMS (ESI- TOF) calc. [C₁₆H₁₆O₆ + H⁺] 345.1697, found 345.1691. $[\alpha]^{20}_{D} = +29.0 (0.1, \text{CHCl}_3).$

3-([1,1'-Biphenyl]-4-yl)-1-((2R,3S,4S)-3,4-dihydroxy-2-(hydroxymethyl)-3,4-dihydro-2H-pyran-5-yl)prop-2-yn-1-one (3e)

3e was synthesized according to General Procedure A using 2-iodoglucal (136 mg, 0.500 mmol, 1.0 equiv.) and 4-ethynyl-1,1'-biphenyl (133 mg, 0.750 mmol, 1.5 equiv.) and was isolated as a yellow solid (126 mg, 0.359 mmol, 72%).¹H NMR (300 MHz, DMSO-*d*₆) δ 8.14 (s, 1H), 7.76 (m, 6H), 7.51 (t, *J* = 7.6 Hz, 2H), 7.43 (d, *J* = 7.2 Hz, 1H), 5.45 – 5.21 (m, 2H), 4.98 (s, 1H), 4.35 (d, J = 10.5 Hz, 2H), 3.95 – 3.84 (m, 1H), 3.83 - 3.71 (m, 1H), 3.65 (d, J = 12.6 Hz, 1H); 13 C NMR (75 MHz, DMSO d_6) δ 176.1, 162.0, 142.6, 139.3, 133.8, 129.6, 128.7, 127.5, 127.3, 119.5, 119.00, 88.9, 86.7, 83.54, 67.3, 61.2, 60.7; m.p. 124 – 126 °C; IR (v, cm⁻¹) = 3232, 2844,

2747, 2115, 1546, 1544, 1460, 1260, 1210, 1115, 810; HRMS (ESI- TOF) calc. [C₂₁H₁₈O₅Na⁺] 373.1046, found 373,1042; $[\alpha]^{20}$ = +7.0 (0.05, CHCl₃).

1-((2R,3S,4S)-3,4-dihydroxy-2-(hydroxymethyl)-3,4-dihydro-2H-pyran-5-yl)-3-(3fluorophenyl)prop-2-yn-1-one (3f)

3f was synthesized according to General Procedure A using 2-iodoglucal (136 mg, 0.5 mmol, 1.0 equiv.) and 1-ethynyl-3-fluorobenzene (87 µL, 0.75 mmol, 1.5 equiv.) and was isolated as a white solid (61 mg, 0.21 mmol, 42%).¹H NMR (300 MHz, CD₃OD) δ 8.26 (s, 1H), 7.63 - 7.56 (m, 2H), 7.51 (d, J = 9.4 Hz, 1H), 7.44 - 7.34 (m, 1H), 4.61 (d, J =3.4 Hz, 1H), 4.51 (s, 1H), 4.15 – 3.93 (m, 3H), 3.47 (dd, J = 11.6, 8.9 Hz, 1H), 3.42 – 3.34 (m, 2H); ¹³C NMR (75 MHz, CD₃OD) δ 178.1, 164.1, 163.1 (d, J = 144.1 Hz), 132.1 (d, J = 8.6 Hz), 130.0 (d, J = 3.1 Hz), 123.3 (d, J = 9.5 Hz), 120.4 (d, J = 9.0 Hz), 120.1,

119.1 (d, J = 21.5 Hz), 89.2, 86.5, 83.9, 68.9, 63.7, 62.1; m.p. 141.5 – 142.1 °C; IR (ν , cm⁻¹) = 3226, 2836, 2129, 1527, 1428, 1384, 1158, 979; HRMS (ESI-TOF) calc. $[C_{15}H_{13}FO_5Na^+]$ 315.0639, found 315.0648; $[\alpha]^{20}D^= -$ 143.0(0.1, CHCl₃).

3-(3-Chlorophenyl)-1-((2R,3S,4S)-3,4-dihydroxy-2-(hydroxymethyl)-3,4-dihydro-2H-pvran-5vl)prop-2-vn-1-one (3g)

3g was synthesized according to General Procedure A and using 2-iodoglucal (136 mg, 0.500 mmol, 1.0 equiv.) and 3-chloro-1-ethynylbenzene (92 µL, 0.75 mmol, 1.5 equiv.) and was isolated as a white solid (74 mg, 0.24 mmol, 48%).¹H NMR (300 MHz, CD₃OD) δ 8.21 (s, 1H), 7.73 (s, 1H), 7.67 – 7.55 (m, 2H), 7.51 (d, J = 7.8 Hz, 1H), 4.56 (s, 1H), 4.44 (s, 1H), 4.06 – 3.87 (m, 3H); ¹³C NMR (75 MHz, CD₃OD) δ178.0, 163.9, 135.7, 133.2, 132.1, 131.9, 131.4, 123.2, 120.3, 88.9, 86.7, 83.8, 68.8, 63.6, 62.0.m,p. 134 – 135 °C; IR (υ , cm⁻¹) = 3255, 2831, 2132, 1426, 1363, 1272, 1162, 1061, 985, 763; HRMS (ESI- TOF) calc. $[C_{15}H_{13}ClO_5Na^+]$ 331.0344, found 331.0346; $[\alpha]^{20}D = -20.0$ (0.1, CHCl₃).

4-(3-((2R,3S,4S)-3,4-Dihydroxy-2-(hydroxymethyl)-3,4-dihydro-2H-pyran-5-yl)-3-oxoprop-1-yn-1-yl)benzonitrila (3h)

3h was synthesized according to General Procedure A using 2-iodoglucal (136 mg, 0.5 mmol, 1.0 equiv.) and 4-ethynylbenzonitrile (95 mg, 0.75 mmol, 1.5 equiv.) and was isolated as a white solid (87 mg, 0.29 mmol, 58%). ¹H NMR (300 MHz, DMSO- d_6) δ 8.14 (s, 1H), 7.91 (dd, J = 6.1 Hz, 4H), 5.34 – 5.28 (m, 1H), 5.26 – 5.23 (m, 1H), 4.92 (t, J = 5.6 Hz, 1H), 4.32 (s, 1H), 4.26 (s, 1H), 3.81 (s, 1H), 3.72 (q, J = 6.2 Hz, 1H), 3.64 – 3.56 (m, 1H);¹³C NMR (75 MHz, DMSO- d_6) δ 175.2, 162.3, 133.3, 132.6, 124.5, 119.1, 118.1, 112.7, 88.0, 86.0, 83.2, 66.7, 60.5, 60.1; m.p. 151 – 152°C; IR (υ , cm⁻¹)

= 3237, 3220, 2825, 2157, 1687, 1564, 1538, 1268, 1175, 985, 821;HRMS (ESI-TOF) calc. $[C_{16}H_{13}NO_5Na^+]$ 322.0686, found 322.0683; $[\alpha]^{20}_{D} = +12.0$ (0.1, CHCl₃).

1-((2R,3S,4S)-3,4-Dihydroxy-2-(hydroxymethyl)-3,4-dihydro-2H-pyran-5-yl)-3-(pyridin-3-yl)prop-2-yn-1-one (3i)

3i was synthesized according to General Procedure A using 2-iodoglucal (136 mg, 0.500 mmol, 1.0 equiv.) and 3-ethynylpyridine (77 μ L, 0.75 mmol, 1.5 equiv.) and was isolated as a yellow solid (91 mg, 0.33 mmol, 66%).¹H NMR (300 MHz, DMSO-d₆) δ 8.89 (s, 1H), 8.67 (d, J = 4.8 Hz, 1H), 8.15 (s, 2H), 7.50 (s, 1H), 5.29 (dd, J = 22.0, 4.1 Hz, 2H), 4.91 (s, 1H), 4.30 (d, J = 12.8 Hz, 2H), 3.83 (s, 1H), 3.73 (d, J = 6.5 Hz, 1H), 3.64 – 3.55 (m, 1H); ¹³C NMR (75 MHz, DMSO-d₆) δ 175.8, 162.6, 153.3, 151.0, 140.5, 124.1, 119.5, 117.4,

88.4, 85.5, 83.6, 67.2, 61.1, 60.6; m.p. 137.8 – 138.4°C; IR (υ , cm⁻¹) = 3138, 2037, 1933, 1536, 1493, 1510, 1151, 987; HRMS (ESI- TOF) calc. [C₁₄H₁₃NO₅+H⁺] 276.0866, found 276.0867; [α]²⁰_D = -67.0 (0.1, CHCl₃).

1-((2R,3S,4S)-3,4-Dihydroxy-2-(hydroxymethyl)-3,4-dihydro-2H-pyran-5-yl)hept-2-yn-1-one (3j)

3j was synthesized according to General Procedure A using 2-iodoglucal (136 mg, 0.500 mmol, 1.0 equiv.) and 1-hexyne (86 μ L, 0.75 mmol, 1.5 equiv.) and was isolated as a white solid (26 mg, 0.10 mmol, 20%). ¹H NMR(300 MHz, CD₃OD) δ 8.05 (s, 1H), 6.77 (s, 1H), 4.49 (s, 1H), 4.37 (s, 1H), 4.04 – 3.95 (m, 3H), 3.93 – 3.86 (m, 2H), 2.53 (t, *J* = 7.0 Hz, 2H), 1.73 – 1.63 (m, 2H), 1.55 (q, *J* = 7.4 Hz, 2H), 1.04 (t, *J* = 7.3 Hz, 3H); ¹³C

NMR (75 MHz, CD₃OD) δ 163.3, 149.0, 83.6, 81.1, 74.5, 70.9, 68.8, 63.7, 61.9, 31.1, 23.0, 19.1, 13.8; m.p. 111 – 112°C; IR (υ , cm⁻¹) = 3206, 2836, 2761, 2129, 1598, 1536, 1411, 1250, 1100, 980; HRMS (ESI- TOF) calc. [C₁₃H₁₈O₅Na⁺] 277.1046, found 277.1040; [α]²⁰_D = +58.0 (0.05, CHCl₃).

4-Cyclohexyl-1-((2*R*,3*S*,4*S*)-3,4-dihydroxy-2-(hydroxymethyl)-3,4-dihydro-2*H*-pyran-5-yl)but-2-yn-1-one (3k)

3k was synthesized according to General Procedure A using 2-iodoglucal (136 mg, 0.500 mmol, 1.0 equiv.) and 3-cyclohexylpropyne (108 μ L, 0.750 mmol, 1.5 equiv.) and was isolated as a yellow solid (33 mg, 0.12 mmol, 23%).¹H NMR (300 MHz, CD₃OD) δ 8.05 (s, 1H), 4.50 (s, 1H), 4.38 (s, 1H), 4.05 – 3.83 (m, 5H), 2.42 (d, *J* = 6.4 Hz, 2H), 1.95 – 1.77 (m, 6H), 1.41 – 1.09 (m, 6H); ¹³C NMR (75 MHz, CD₃OD) δ 178.9, 163.3, 120.2,

93.7, 83.6, 79.8, 68.8, 63.7, 62.0, 38.3, 33.8, 27.2, 27.2, 27.2; m.p. 109.2 - 112.4 °C; IR (υ , cm⁻¹) = 3209, 2823, 2757, 2136, 1566, 1529, 1402, 1259, 1177, 979, 806; HRMS (ESI- TOF) calc. [C₁₆H₂₂O₅+H⁺] 295.1540, found 295.1546; [α]²⁰_D = +26.0 (0.05, CHCl₃).

1-((2*R*,3*S*,4*S*)-3,4-Dihydroxy-2-(hydroxymethyl)-3,4-dihydro-2*H*-pyran-5-yl)-5-phenylpent-2-yn-1-one (3l)

31 was synthesized according to General Procedure A using 2-iodoglucal (136 mg, 0.500 mmol, 1.0 equiv.) and 4-phenyl-1-butyne (105 μ L, 0.750 mmol, 1.5 equiv.) and was isolated as a yellow solid (51 mg, 0.17 mmol, 34%).¹H NMR (300 MHz, DMSO*d*₆) δ 7.68 (s, 1H), 7.35 – 7.23 (m, 5H), 5.17 (m, 2H), 4.88 (t, *J* = 5.6 Hz, 1H), 4.24 (s, 1H), 4.17 (s, 1H), 3.76 (s, 1H), 3.70 – 3.53 (m, 2H), 2.87 (t, *J* = 7.2 Hz, 2H), 2.77 (d, *J* = 7.1 Hz, 2H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 175.8, 160.9, 140.0, 128.4, 128.3, 126.3, 118.8, 91.4, 82.8, 78.4, 66.7, 60.5, 60.1, 33.1, 19.9; m.p. 127 – 128°C; IR (υ , cm^{-1}) = 3204, 2835, 2767, 2133, 1564, 1533, 1412, 1250, 1170, 810; HRMS (ESI-TOF) calc. [$C_{17}H_{18}O_5Na^+$] 325.1046, found 325.1048; [α]²⁰_D = +62.0(0.1, CHCl₃).

1-((3S,4S)-3,4-Dihydroxy-3,4-dihydro-2*H*-pyran-5-yl)-3-phenylprop-2-yn-1-one (3m)

3m was synthesized according to General Procedure A using 2-iodo-L-arabinal (121 mg, 0.500 mmol, 1.0 equiv.) and phenylacetylene (82 μ L, 0.75 mmol, 0.75 mmol, 1.5 equiv.) and was isolated as a yellow solid (50 mg, 0.21 mmol, 41%).¹H NMR (300 MHz, CD₃OD) δ 8.14 (s, 1H), 7.73 (m, 2H), 7.57 (m, 3H), 4.79 (m, 1H), 4.23 (m, 2H), 4.07 (m, 2H), 3.92 (m, 1H); ¹³C NMR (75 MHz, CD₃OD) δ 176.1, 163.7, 148.8, 132.5, 130.4, 128.5, 119.9, 89.8, 84.9, 69.8, 66.5, 64.2; m.p. 118 – 120 °C; IR (υ , cm⁻¹) = 3278, 2823, 2130, 1559, 1030 – 959 – 735):HRMS (ESL TOF) calc

1344, 1276, 1164, 1030, 959, 735); HRMS (ESI- TOF) calc. $[C_{14}H_{12}NO_4 + H^+]$ 245.0808, found 245.0806; $[\alpha]^{20}_D = -159.0$ (0.1, CHCl₃).

1-((3R,4S)-3,4-Dihydroxy-3,4-dihydro-2H-pyran-5-yl)-3-(p-tolyl)prop-2-yn-1-one (3n)

3n was synthesized according to General Procedure A and using 2-iodo-D-xylal (121 mg, 0.500 mmol, 1.0 equiv.) and 4-ethynyltoluene (95 μ L, 0.75 mmol, 1.5 equiv.) and was isolated as a yellow solid (115 mg, 0.445 mmol, 89%).¹H NMR (300 MHz, CD₃OD) δ 8.26 (s, 1H), 7.62 (d, *J* = 8.2 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 4.59 (s, 1H), 4.49 – 4.28 (m, 2H), 4.00 (s, 1H), 2.49 (s, 3H); ¹³C NMR (75 MHz, CD₃OD) δ 178.6, 164.8, 142.8, 133.9, 130.7, 120.1, 118.3, 91.9, 86.0, 68.8, 67.2, 61.1, 21.8; m.p. 85.7 – 86.3°C; IR (υ ,

 cm^{-1}) = 3274, 2123, 1551, 1203, 1166, 1015, 991, 966, 799; HRMS (ESI- TOF) calc. [$C_{15}H_{14}O_4Na^+$] 281.0784, found 281.0781; [α]²⁰_D = -194.0 (0.1, CHCl₃).

1-((3R,4S)-3,4-Dihydroxy-3,4-dihydro-2H-pyran-5-yl)-3-(3-fluorophenyl)prop-2-yn-1-one (30)

30 was synthesized according to General Procedure A and using 2-iodo-D-xylal (121 mg, 0.500 mmol, 1.0 equiv.) and 1-ethynyl-3-fluorobenzene (87µL, 0.75 mmol, 1.5 equiv.) and was isolated as a white solid (68 mg, 0.26 mmol, 52%). ¹H NMR (300 MHz, CD₃OD) δ 8.24 (s, 1H), 7.54 (s, 2H), 7.47 (d, *J* = 9.5 Hz, 1H), 7.38 – 7.30 (m, 1H), 4.55 (s, 1H), 4.32 (q, 2H), 3.96 (s, 1H); ¹³C NMR (75 MHz, CD₃OD) δ 178.1, 165.4, 163.7 (d, *J* = 246.5 Hz), 162.1, 131.9 (d, *J* = 8.6 Hz) 129.9 (d, *J* = 3,1 Hz) 123.3 (d, *J* = 9.5 Hz), 120.1 (d, *J*

= 3.1 Hz),118.9 (d, J = 21.5 Hz), 89.2, 86.4, 68.7, 67.1, 61.0; m.p. 141.3 – 142.6°C; IR (υ , cm⁻¹) = 3265, 2130, 1536, 1440, 1380, 1275, 1210, 1156, 980, 860; HRMS (ESI-TOF) calc. [C₁₄H₁₁FO₄ + H⁺] 263.0714, found 263.0717; [α]²⁰_D = -168.0.

(7*R*,8*S*,8a*R*)-8-Hydroxy-7-(hydroxymethyl)-2-(p-tolyl)-8,8a-dihydropyrano[4,3-b]pyran-4(7*H*)-one (4a)

4a was synthesized according to General Procedure Band using **3a** (58 mg, 0.20 mmol, 1.0 equiv.) and AuCl₃ (6.0 mg, 0.02 mmol, 10 mol%) and was isolated as a white solid (43 mg, 0.15 mmol, 74%). ¹H NMR (300 MHz, DMSO-*d*₆) δ 7.81 (d, *J* = 7.9 Hz, 2H), 7.37 (s, 1H), 7.31 (d, *J* = 8.0 Hz, 2H), 6.06 (s, 2H), 5.10 (d, *J* = 7.3 Hz, 1H), 4.90 (s, 1H), 4.13 – 3.96 (m, 2H), 3.80 (d, *J* = 17.3 Hz, 2H), 2.37 (s, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 181.6, 168.0, 151.0, 142.2, 130.1, 129.8, 126.8, 108.9, 102.4, 80.8, 79.4, 64.7, 59.9, 21.5; m.p. 172.8 – 173.9°C; IR (ν , cm⁻¹) = 3306, 2829, 1600, 1538, 1460, 1341, 1210, 1143, 1095, 1026, 808;HRMS (ESI-TOF) calc. [C₁₆H₁₆O₅+ H⁺] 289.1071, found 289.1072; [α]²⁰_D = -344.0 (0.1, CHCl₃).

(7*R*,8*S*,8a*R*)-8-Hydroxy-7-(hydroxymethyl)-2-phenyl-8,8a-dihydropyrano[4,3-b]pyran-4(7*H*)-one (4b)

4b was synthesized according to General Procedure B using **3b** (55 mg, 0.20 mmol, 1.0 equiv.) AuCl₃ (6.0 mg, 0.02 mmol, 10 mol%) and was isolated as a white solid (31 mg, 0.11 mmol, 56%). ¹H NMR (300 MHz, CD₃OD) δ 8.42 (s, 1H), 7.67 (t, *J* = 10.6 Hz, 2H), 7.56 – 7.34 (m, 3H), 4.74 – 4.59 (m, 1H), 4.22 (m, 1H), 3.90 – 3.74 (m, 3H);¹³C NMR (75 MHz, CD₃OD) δ 189.7, 159.5, 151.9, 134.2, 132.1, 130.0, 121.0, 105.8, 101.4, 69.3, 69.3, 65.9, 65.5; m.p. 157 – 159 °C; IR (ν , cm⁻¹) = 3308, 2836, 1605, 1542, 1466, 1344, 1200, 1140, 1015, 890; HRMS (ESI- TOF) calc. [C₁₅H₁₄O₅+ H⁺]: 275.0914, found: 275.0920; [α]²⁰_D = -359.0 (0.1, CHCl₃).

(7*R*,8*S*,8a*R*)-8-Hydroxy-7-(hydroxymethyl)-2-(4-methoxyphenyl)-8,8a-dihydropyrano[4,3-b]pyran-4(7*H*)-one (4c)

4c was synthesized according to General Procedure B and obtained using 3d(61 mg, 0.20 mmol, 1.0 equiv.) AuCl₃ (6.0 mg, 0.02 mmol, 10 mol%) and was isolated as a yellow solid (47 mg, 0.15 mmol, 77%). ¹H NMR (300 MHz, DMSO-*d*₆) δ 7.91 (d, J = 9.1 Hz, 2H), 7.50 (s, 1H), 7.07 (d, J = 8.8 Hz, 2H), 6.05 (s, 1H), 5.19 (d, J = 7.7 Hz, 1H), 4.35 – 4.26 (m, 1H), 4.09 (dd, J = 22.9, 10.7 Hz, 3H), 3.93 (s, 3H);¹³C NMR (75 MHz, DMSO-*d*₆) δ 181.1, 166.9, 150.6, 143.0, 138.9, 131.3, 129.0, 128.1, 127.0, 126.9, 126.8, 108.4, 102.5, 80.3, 79.0, 64.2, 59.4; m.p. 153.6 – 155.1°C; IR (υ, cm⁻¹) = 3306, 2829, 1600, 1538, 1460, 1341, 1210, 1143, 1095, 1026, 808;HRMS (ESI- TOF) calc. [C₁₆H₁₆O₆ + H⁺]305.1020, found 305.1024; [α]²⁰_D = -194.0 (0.1,

CHCl₃).

(7*R*,8*S*,8a*R*)-2-([1,1'-Biphenyl]-4-yl)-8-hydroxy-7-(hydroxymethyl)-8,8a-dihydropyrano[4,3-b]pyran-4(7*H*)-one (4d)

4d was synthesized according to General Procedure B and using **3e** (70 mg, 0.20 mmol, 1.0 equiv.) AuCl₃ (6.0 mg, 0.02 mmol, 10 mol%) and was isolated as a yellow solid (44 mg, 0.13 mmol, 63%). ¹H NMR (300 MHz, DMSO-d₆) δ 8.01 – 7.88 (m, 2H), 7.70 (m, 4H), 7.45 – 7.26 (m, 4H), 6.08 (s, 1H), 6.00 (s, 1H), 5.05 (d, J = 7.4 Hz, 1H), 4.81 (s, 1H), 3.99 (m, 2H), 3.78 (m, 2H);¹³C NMR (75 MHz, DMSO-d₆) δ 181.6, 167.5, 151.2, 143.5, 139.4, 131.8, 129.5, 128.7, 127.5, 127.5, 127.3, 108.9, 103.1, 80.8, 79.5, 64.8, 59.9; m.p. 132 – 134 °C; IR (υ , cm⁻¹) = 3229, 2827, 2758, 1601,1538, 1367, 1210, 1032, 1022, 747, 676;HRMS (ESI-TOF) calc. [C₂₁H₁₈O₅+ H⁺]351.1227, found 351.1227; [α]²⁰_D = –249.0 (0.1,

CHCl₃).

(7*R*,8*S*,8a*R*)-8-Hydroxy-7-(hydroxymethyl)-2-(4-pentylphenyl)-8,8a-dihydropyrano[4,3-b]pyran-4(7*H*)-one (4e)

4e was synthesized according to General Procedure B and using **3c** (68 mg, 0.20 mmol, 1.0 equiv.) AuCl₃ (6.0 mg, 0.02 mmol, 10 mol%) and was isolatedas a yellow solid (42 mg, 0.12 mmol, 61%). ¹H NMR (300 MHz, CD₃OD) δ 7.69 (d, J = 7.9 Hz, 2H), 7.33 (s, 1H), 7.19 (d, J= 7.9 Hz, 2H), 5.93 (s, 1H), 5.03 (d, J = 7.5 Hz, 1H), 4.20 - 4.07 (m, 1H), 3.97 - 3.81 (m, 3H), 2.56 (t, J = 7.7 Hz, 2H), 1.53 (t, J = 7.8 Hz, 2H), 1.28 - 1.19 (m, 4H), 0.80 (t, J = 6.6 Hz, 3H);¹³C NMR (75 MHz, CD₃OD) δ 185.0, 171.6, 152.9, 148.9, 131.3, 129.9, 127.9, 109.8, 102.6, 81.7, 80.6, 66.1, 61.2, 36.8, 32.6, 32.0, 23.5, 14.3; m.p. 146 - 148 °C; IR (υ , cm⁻¹) = 3215, 2829, 2762, 1603, 1540, 1369, 1208, 1030, 1018, 780; HRMS (ESI-TOF) calc. 15 1697 found: 345 1691; $\lfloor \alpha \rfloor^{20} = -169.0$ (0.1 CHCl.)

$[C_{20}H_{24}O_5 + H^+]: \ 345.1697, \ found: \ 345.1691; \ [\alpha]^{20}{}_D = -169.0 \ (0.1, \ CHCl_3).$

(8R,8aR)-8-Hydroxy-2-(4-pentylphenyl)-8,8a-dihydropyrano[4,3-b]pyran-4(7H)-one (4f)

4f was synthesized according to General Procedure B and using **3n** (52 mg, 0.20 mmol, 1.0 equiv.) and AuCl₃ (6.0 mg, 0.02 mmol, 10 mol%) and was isolated as a yellow solid (23 mg, 0.09 mmol, 44%). ¹H NMR (300 MHz, CD₃OD) δ 7.82 (d, *J* = 7.9 Hz, 2H), 7.48 (s, 1H), 7.35 (d, *J* = 7.9 Hz,

2H), 6.09 (s, 1H), 5.12 (d, J = 7.0 Hz, 1H), 4.47 – 4.27 (m, 2H), 4.01 (t, J = 10.8 Hz, 1H), 2.46 (s, 3H);¹³C NMR (75 MHz, CD₃OD) δ 185.1, 171.5, 153.5, 144.0, 131.0, 130.5, 127.8, 109.8, 102.7, 80.0, 69.8, 66.2, 21.5; m.p. 91 – 93°C; IR (υ , cm⁻¹) = 3309, 2858, 1620, 1542, 1460, 1344, 1200, 1141, 1080, 810;HRMS (ESI-TOF) calc. [C₁₅H₁₄O₄+H⁺] 259.0965, found 259.0964; [α]²⁰_D = -194.0 (0.1, CHCl₃).

4. ¹H and ¹³C NMR spectra

(2R,3S,4R)-2-(Hydroxymethyl)-5-iodo-3,4-dihydro-2H-pyran-3,4-diol (1a)

(3S,4R)-5-iodo-3,4-dihydro-2H-pyran-3,4-diol (1b)

¹³C NMR (75 MHz, CDCl₃) spectrum of **1b**

1-((2*R*,3*S*,4*S*)-3,4-Dihydroxy-2-(hydroxymethyl)-3,4-dihydro-2*H*-pyran-5-yl)-3-(p-tolyl)-prop-2-yn-1-one (3a)

1-((2R,3S,4S)-3,4-Dihydroxy-2-(hydroxymethyl)-3,4-dihydro-2*H*-pyran-5-yl)-3-phenylprop-2-yn-1-one (3b)

1-((2*R*,3*S*,4*S*)-3,4-Dihydroxy-2-(hydroxymethyl)-3,4-dihydro-2*H*-pyran-5-yl)-3-(4-pentylphenyl)prop-2-yn-1-one (3c)

3-([1,1'-Biphenyl]-4-yl)-1-((2R,3S,4S)-3,4-dihydroxy-2-(hydroxymethyl)-3,4-dihydro-2*H*-pyran-5-yl)prop-2-yn-1-one (3e)

3-(3-Chlorophenyl)-1-((2R,3S,4S)-3,4-dihydroxy-2-(hydroxymethyl)-3,4-dihydro-2*H*-pyran-5-yl)prop-2-yn-1-one (3g)

4-(3-((2R,3S,4S)-3,4-Dihydroxy-2-(hydroxymethyl)-3,4-dihydro-2*H*-pyran-5-yl)-3-oxoprop-1-yn-1-yl)benzonitrila (3h)

¹³C NMR (75 MHz, DMSO- d_6) spectrum of **3h**.

4-Cyclohexyl-1-((2*R*,3*S*,4*S*)-3,4-dihydroxy-2-(hydroxymethyl)-3,4-dihydro-2*H*-pyran-5-yl)but-2-yn-1-one (3k)

1-((2*R*,3*S*,4*S*)-3,4-Dihydroxy-2-(hydroxymethyl)-3,4-dihydro-2*H*-pyran-5-yl)-5-phenylpent-2-yn-1-one (3l)

-1

1-((3R,4S)-3,4-Dihydroxy-3,4-dihydro-2H-pyran-5-yl)-3-(3-fluorophenyl) prop-2-yn-1-one~(3o)

(7*R*,8*S*,8a*R*)-8-Hydroxy-7-(hydroxymethyl)-2-(p-tolyl)-8,8a-dihydropyrano[4,3-b]pyran-4(7*H*)-one (4a)

(7*R*,8*S*,8a*R*)-8-Hydroxy-7-(hydroxymethyl)-2-phenyl-8,8a-dihydropyrano[4,3-b]pyran-4(7*H*)-one (4b)

(7*R*,8*S*,8a*R*)-8-Hydroxy-7-(hydroxymethyl)-2-(4-methoxyphenyl)-8,8a-dihydropyrano[4,3-b]pyran-4(7*H*)-one (4c)

¹³C NMR (75 MHz, CD₃OD) spectrum of **4c**.

(7*R*,8*S*,8a*R*)-2-([1,1'-Biphenyl]-4-yl)-8-hydroxy-7-(hydroxymethyl)-8,8a-dihydropyrano[4,3-b]pyran-4(7*H*)-one (4d)

(7*R*,8*S*,8a*R*)-8-Hydroxy-7-(hydroxymethyl)-2-(4-pentylphenyl)-8,8a-dihydropyrano[4,3-b]pyran-4(7*H*)-one (4e)

¹³C NMR (75 MHz, CD₃OD) spectrum of 4f.