SYNTHESIS AND APPLICATIONS OF [60]FULLERENE NANOCONJUGATE WITH 5-AMINOLEVULINIC ACID AND ITS GLYCOCONJUGATE AS DRUG DELIVERY VEHICLES

Maciej Serda,^a Robert Gawecki,^{b,c} Mateusz Dulski,^d Mieczysław Sajewicz,^a Ewa Talik,^c Magdalena Szubka,^c Maciej Zubko,^{d,e} Katarzyna Malarz,^{b,c} Anna Mrozek-Wilczkiewicz,^{b,c} Robert Musioł^a

^aInstitute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland

^bSilesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland

^cA. Chełkowski Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland

^dInstitute of Materials Science, University of Silesia in Katowice, 75 Pulku Piechoty, 1A, 41-500, Chorzow, Poland

^eDepartment of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic

Correspondence: Dr. Maciej Serda, Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland. Tel: +48323591545; Fax: +48322599978, email: maciej.serda@us.edu.pl

ELEMENTAL ANALYSIS OF C_{60} -ALA REACTION SCHEME FOR SYNTHESIS OF C_{60} -ALA and C_{60} -ALA-GA ¹³C-NMR of C_{60} -ALA ESI-MS SPECTRUM OF C_{60} -ALA UV-VIS SPECTRUM OF C_{60} -ALA-GA DLS AND ZETA POTENTIALS OF C_{60} -ALA and C_{60} -ALA-GA HPLC MEASUREMENTS OF PpIX IN MCF-7 CANCER CELL LINE FLUORESCENCE SPECTRUM OF C_{60} -ALA XPS STUDIES OF C_{60} -ALA-GA SEQUENCES OF PRIMERS USED FOR RT-PCR

Element	Concentration
С	54.83
0	36.1
N	5.45
Н	3.62

Elemental analysis of fullerene C₆₀-ALA.

$C_{60}(\mathsf{NHCH}_2\mathsf{COCH}_2\mathsf{CH}_2\mathsf{COOH})_X(\mathsf{OH})_Y \text{ EMPIRICAL FORMULA}$

N/C RATIO: $\frac{14X}{720 + 60X} = \frac{5.45}{54.83}$ X=8.90 \approx 9 UNITS OF 5-ALA ATTACHED to C₆₀

EMPIRICAL FORMULA: C₁₀₅H₉₆N₉O₅₁ (M_w= 2298 Da)

C₆₀-ALA

Synthetic plan for obtaining [60] fullerene nanomaterials C_{60} -ALA and C_{60} -ALA-GA

Fragment of ¹³C-NMR spectrum of fullerene nanomaterial C_{60} -ALA

ESI-MS spectrum of fullerene nanomaterial C_{60} -ALA in a positive mode (100 mV).

Figure S4

ESI-MS spectrum of fullerene nanomaterial C_{60} -ALA in a negative mode (25 mV).

Size measurement of fullerene nanomaterial C_{60} -ALA using dynamic light scattering technique.

Zeta potential of fullerene nanomaterial C_{60} -ALA.

Size measurement of fullerene nanomaterial C_{60} -ALA-GA using the dynamic light scattering technique.

Zeta potential of fullerene nanomaterial C_{60} -ALA-GA.

The HPLC chromatograms measured for dedicated bio-extracts from MCF-7 cancer cell line and standard (PpIX, Sigma Aldrich). The cells before extraction were untreated (control) or treated with 5-ALA, or fullerene nanomaterial C_{60} -ALA.

Figure S10

Fluorescent spectrum of C_{60} -ALA in water (c=0.1 mg/mL) excited at 340 nm.

SEM image of fullerene nanomaterial C_{60} -ALA confirming its hollow structure.

SEM images of fullerene nanomaterial C_{60} -ALA-GA.

The XPS spectra of two fullerene nanomaterials in the wide energy range 0–1400 eV.

A high-resolution photoemission spectra of oxygen (O1s) measured for selected fullerene nanomaterials C_{60} -ALA and C_{60} -ALA-GA.

Compound	С	MCF 7	A549	HCT116
	(mg/mL)	(mg/mL)	(mg/mL)	(mg/mL)
CONTROL	0	0.37	0.41	0.78
5-ALA	1	0.67	0.47	1
C ₆₀ -ALA	1	0.71	0.66	1.34
C ₆₀ -ALA-GA	1	1.52	1.6	3.38

Quantitative HPLC of protoporphyrin IX detected in the cellular lysates and measured at 400 nm after the treatment of cells with 5-ALA or fullerene nanomaterials. The MCF7, A549 and HCT116 cancer cell lines were used in this study. The final results were normalized to number of substrate mmols.

	C ₆₀ -ALA				C ₆₀ -ALA-GA			
Element	Atomic concentr ation [%]	Chemica l states	Binding energy [eV]	Contributio ns of lines [%]	Atomic concentrat ion [at %]	Chemic al states	Binding energy [eV]	Contributio ns of lines [%]
C1s 64.3		C-Si C=C	281.53 283.23	3.7 17.7		C-Si C=C	281.54 283.21	3.7 17.8
		С-Н, С- С	284.89	55.4	69.9	С-Н, С- С	284.90	51.1
	64.3	С-О, С- N, -С-ОН	286.41	11.4		С-О, С- N, -С-ОН	286.36	17.7
		О=С- ОН, С=О	288.27	11.8		О=С- ОН, С=О	288.28	9.8
	24.0	O ₂ /OH ⁻	528.69	8.1	17.7	O ₂ /OH ⁻	528.68	10.5
01s		quinones	530.46	31.5		quinones	530.49	32.1
		С=О	531.89	45.6		С=О	531.93	44.7
		O-C=O	533.26	14.8		O-C=O	533.28	12.7
N1s	7.8	C-N, N- (C=O)- pyridinic N	398.43 399.79	31.4 60.9	8.1	C-N, N- (C=O)- pyridinic N	398.35 399.76	34.4 54.4
Nals	3.5	-	-	-	1.1	-	-	-
Si2p	0.2	-	-	-	1.7	-	-	-
K2p	-	-	-	-	1.1	-	-	-
F1s	-	-	-	-	0.2	-	-	-
Cl2p	0.1	-	-	-	0.1	-	-	-

S2p	0.1	-	-	-	0.1	-	-	-

Chemical composition and atomic concentrations for C_{60} -ALA and C_{60} -ALA-GA, determined from XPS measurements.

Gene name	Sequence of primer					
PEPT1	F	AGGCAACAACTATGTCCGGG				
	R	CACAGCATCGAAGATCGGGA				
ABCG2	F	GCACAGGAAGTTTACGCACAG				
	R	AAGGGGCTAGAAGAAGGGGG				
FECH	F	GATGAATTGTCCCCCAACAC				
	R	GCTTCCGTCCCACTTGATTA				
HO-1	F	CATCCCCTACACCAGCCA				
	R	ATGTTGGGGAAGGTGAAGAAGG				
GAPDH	F	GAGTCAACGGATTTGGTCGTA				
	R	GCCCCACTTGATTTTGGAG				

The sequences of the primers used in RT-PCR experiments.

Compound	C [mg/mL]	C [mmol/L]	C _{max} 5-ALA
C ₆₀ -ALA	1	0.464	4.176
C ₆₀ -ALA-GA	1	0.157	1.413
5-ALA	1	5.97	5.97

The conversion of concentration units for selected fullerene nanomaterials.