Cross-linked \(\beta \)-CD-CMC as an effective aqueous binder for silicon-based anode in rechargeable lithium-ion batteries

Hao-wen Jianga, Yan Yanga, Yi-ming Niea, Zhi-fang Sua, Yun-fei Longa, Yan-xuan Wena,b and Jing Su*a

* Corresponding authors
a School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, China. E-mail: sujing@gxu.edu.cn
b Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, Guangxi University, Nanning, China

The effect of the cross-linking ratio of \(\beta \)-CD to CMC on the electrochemical performance of the electrode is shown in Fig. S1. The binders synthesized with \(\beta \)-CD excess and CMC excess were compared with the samples synthesized in equal amounts, respectively. The results show that the electrode exhibits the characteristics of a pure CMC electrode when there is an excess of CMC, with the electrode having the highest initial capacity. When there is an excess of \(\beta \)-CD the electrode exhibits the characteristics of pure \(\beta \)-CD, with a low initial capacity but a gentle trend of capacity decay. Their capacity retention rates were 41\%, 47\% and 49\% respectively. The equal
synthesized samples have the highest capacity retention and a gentle capacity decay trend.