Supporting Information

Reduction of Imines with a Reusable Bimetallic $PdCo-Fe_3O_4$ Catalyst at Room Temperature under Atmospheric Pressure of H_2

Sabyuk Yang and Byeong Moon Kim*

Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea.

Table of Contents

I. Experimental section	
1. General information	S3
2. Experimental procedures of the synthesis of catalysts	S8
3. Supplementary reaction optimization data	
• Table S1. Solvent screening	S11
Table S2. Catalyst screening	S12
• Table S3. Catalyst loading screening	S13
• Table S4. Reductant screening	S14
4. Characterization of catalysts	
• Figure S1. SEM analysis	S15
• Figure S2. SEM-EDS analysis	S16
• Figure S3. EDS map spectrum	S19
• Figure S4. HR-TEM analysis	S20
• Figure S5. BF-STEM and HADDF-STEM analysis	S22
• Figure S6. Particle distribution of PdCo–NPs	S24
• Figure S7. EELS spectrum	S26
• Figure S8. XRD analysis	S27
• Figure S9. XPS data	S28
• Figure S10. FTIR analysis	S30
• Figure S11. ICP-AES analysis	S31

5. Supplementary data	
• Figure S12. SEM, EDS, and ICP-AES analysis of Pd _x Co _y –Fe ₃ O ₄ .	S32
• Figure S13. Recycling data of various $Pd_xCo_y-Fe_3O_4$	S37
Figure S14. SEM analysis of recycled catalyst	S38
• Figure S15. HR-TEM analysis of recycled catalyst	S39
• Figure S16. SEM analysis of other PdCo–NPs	S40
Table S5. ICP-AES of other PdCo–NPs	S40
• Table S6. Yield comparison of monometallic catalysts with other	
substrates	S41
• Figure S17. Kinetic data of imine reduction	S42
6. Characterization of products	S43
II. References	S49
III. NMR spectra	S50

I. Experimental section

1. General information

All 1D NMR spectroscopy experiments were conducted with a DD2MR400 (400 MHz, Agilent Technologies, Santa Clara, CA, USA) or Varian 500 (500 MHz, Varian, Inc., Palo Alto, CA, USA). NMR spectra were processed with MestReNova. Chemical shifts are reported in ppm and referenced to residual solvent peaks (CHCl₃ in CDCl₃: 7.26 ppm for ¹H, 77 ppm for ¹³C). Coupling constants are reported in Hertz. All commercially available chemicals were purchased from Acros Organics (Pittsburgh, PA, USA), Sigma-Aldrich Aldrich (St. Louis, MO, USA), Alfa Aesar (Ward Hill, MA, USA), or Tokyo Chemical Industry (Tokyo, Japan), and used without further purification. Imine substrates were synthesized by a known procedure.^[1]

Catalyst characterization

SEM images were obtained using JSM-7800F Prime (JEOL Ltd., Tokyo, Japan) and MERLIN Compact (ZEISS, Oberkochen, Germany). HR-TEM images were obtained using JEM-3010 (JEOL Ltd., Tokyo, Japan). STEM images were obtained using JEM-ARM200F (JEOL Ltd., Tokyo, Japan). XPS data were obtained using SIGMA PROBE (ThermoVG, U.K). ICP-AES data were obtained using OPTIMA 8300 (Perkin-Elmer, Waltham, MA, USA). The machines mentioned above are installed at the National Center for Inter-University Research Facilities (NCIRF) at Seoul National University. EELS images were obtained using Themis Z (Thermo Fisher, MA, USA) installed at the Research Institute of Advanced Materials (RIAM) at Seoul National University.

The powder X-ray diffraction (XRD) was performed using a D8 Advance (Bruker, Billerica, MA, USA) installed at the National Instrumentation Center for Environmental Management (NICEM) at Seoul National University.

Fourier-transform infrared spectroscopy images were obtained using Spectrum Two (Perkin-Elmer, Waltham, MA, USA) installed at Seoul National University.

General Procedure of the Synthesis of Amines

A glass vial (10 mL) were charged with an imine (0.20 mmol), PdCo–Fe₃O₄ (2.0 mol%), and *N*, *N*-dimethylacetamide (1.0 mL). The mixture was sonicated for 1 min and stirred at room temperature. Next, the vial was purged with H₂ using a balloon filled with H₂ for 1 min and stirred for 18 h at room temperature. The reaction mixture was extracted by ethyl acetate and the organic layer was filtered through a layer of Celite^R and magnesium sulfate. The crude product was purified by column chromatography.

Materials/Instrumentation

ESCA (Electron Spectroscopy for Chemical Analysis)

- 1. Model: SIGMA PROBE (ThermoVG, U.K)
- 2. Electron analyzer with Lens system
 - 2.1 Type: Spherical sector analyzer, 180 degree
 - 2.2 Mean diameter: 275 mm or equivalent
 - 2.3 Analysis area: 15 um to 400 um,
 - 2.4 Detector: Multi channeltron detectors
- 3. UHV Analysis chamber
 - 3.1 Material: 100% mu- metal chamber or equivalent
 - 3.2 Ultimate vacuum: 5 x 10⁻¹⁰ mbar or better (Ti-sub pump)
- 4. Monochromator X-ray source
 - 4.1 Type: Microfocused monochromator source
 - 4.2 Electron gun: 15 kv or better
 - 4.3 Anode: Moveable Al

5. SEM/SAM/AES

- 5.1 Type: with field Schottky Field emission source
- 5.2 Beam Energy: 1 keV 10 keV
- 5.3 SEM resolution: < 95 nm*, at 10 keV, 5.0 nA
- 5.4 Beam Current: Up to 50 nA
- 5.5 SAM resolution: < 250 nm*, at 3 keV, 5.0 nA

6. Ion source

- 6.1 Energy range: 0.1 keV to 4 keV, continuously variable
- 6.2 Max. beam current density: 3 mA/cm² or equivalent
- 6.3 Min. Beam diameter: 200 um or equivalent
- 7. Electron flood gun for charge compensation

Transmission Electron Microscope II (ccd camera type)

- 1. Model: JEM-3010 (JEOL Ltd., Tokyo, Japan)
- 2. Accelerating Voltage: 80 to 300 Kv
- 3. Gatan Digital Camera (MSC-794)
- 4. Resolution: Point image: 0.17 nm Lattice image: 0.14 nm
- 5. MAG: x50 ~ x1,500,000
- 6. Camera Length: SA DIFF Mode: 120 ~ 3,000 mm

Cs-STEM (Cs corrected STEM with Cold FEG)

- 1. Model: JEM-ARM200F (JEOL Ltd., Tokyo, Japan)
- 2. Specifications
 - a. HT: 60, 80, 120, 200 kV

- b. Magnification: 50 to 2,000,000 X (TEM), 200 to 1,500,000 X (STEM)
- c. Resolution
- STEM mode: HAADF 0.08 nm/ BF 0.136 nm
- TEM mode: Point 0.23 nm
- d. Sample tilting
- X / Y: ±35° / ±30°
- 3. Analysis functions
 - a. CCD Camera: OneView camera (25 fps at full 4k x 4k resolution)
 - b. EDS: SDD Type (Active area 100mm²/ Solid angle 0.9 sr)
 - c. EELS: Model 965 GIF Quantum ER

EELS (Cs corrected monochromated TEM/STEM)

- 1. Accelerating voltage: 60-300 kV (60, 80, 200, 300)
- 2. Resolution
 - Image corrector: Information Limit 70 pm, STEM resolution 136 pm
 - Probe corrector: Information Limit 100 pm, STEM resolution 60 pm
 - X-FEG/ monochromator + image corrector: Information Limit 60 pm, STEM resolution 60 pm
- 3. EDS energy resolution at Mn ≤ 136 eV (all detectors): 133.4 eV
- 4. Monochromator energy resolution: 300 kV: 0.17 eV, 200 kV: 0.14 eV, 80 kV: 0.17 eV, 60 kV: 0.16 eV
- 5. HR-STEM resolution (HAADF with S-CORR ≤ 0.06 nm): 0.05 nm

Fourier-transform infrared spectroscopy

Wavenumber Range: 8300 ~ 350 cm⁻¹ optimized, proprietary KBr beam splitter Interferometer: Rotary Michelson interferometer Signal to Noise: 9,300:1 peak-peak, 5 seconds Wavenumber accuracy: Better than 0.01 cm⁻¹ at 3,000 cm⁻¹ Resolution: 0.5 cm⁻¹ standard IQ/OQ support Size: 450 mm x 300 mm x 210 mm (W x D x H) Communication: USB, wireless and TCP/IP AVI (Absolute Virtual Instrument) option Weight: 13 kg

2. Experimental procedures of the synthesis of catalysts

Synthesis of PdCo–Fe₃O₄ NPs

Initially, 88.7 mg (0.50 mmol) of PdCl₂ and 1.00 g of PVP (Mw~10,000 g mol⁻¹, 0.10 mmol) were placed in 20 mL of ethylene glycol (EG) in a 100 mL round-bottom flask. This mixture was sonicated for 10 min and stirred for 1 h at 100 °C in an oil bath. In a separate 100 mL round-bottom flask, 119.0 mg (0.50 mmol) of $CoCl_2 \cdot 6H_2O$ and 500 mg of PVP (0.050 mmol) were added to 20 mL of water. This mixture was sonicated for 10 min and stirred for 30 min at 60 °C in an oil bath. Meanwhile, 500 mg of Fe₃O₄ NPs were added to 150 mL of water in a two-necked 500 mL round-bottom flask and then sonicated for 10 min. The prepared Pd precursor solution was then injected dropwise onto the Fe₃O₄ suspension with vigorous stirring. After 5 min, the Co precursor solution was added and 90 mg (2.38 mmol) of sodium borohydride in 20 mL of water was injected dropwise. The resulting mixture was stirred for 24 h at 60 °C. Subsequently, the PdCo alloy on Fe₃O₄ nanoparticles was retrieved via sonication and washing with ethanol (40 mL x 10 times) and dried on a rotary evaporator to give PdCo–Fe₃O₄ NPs (550 mg, 77% yield based on PdCl₂).

Synthesis of Pd–Fe₃O₄ NPs

Initially, 177 mg of PdCl₂ (1.0 mmol) and 2.00 g of PVP (0.20 mmol) were placed in 40 mL of EG in a 100 mL round-bottom flask. This mixture was sonicated for 10 min and stirred for 1 h at 100 °C. Meanwhile, 500 mg of Fe₃O₄ NPs was added to 150 mL of EG in a two-necked 500 mL round-bottom flask. The prepared precursor solution was then injected dropwise to Fe₃O₄ NPs in 150 mL of EG, and stirred at 100 °C for an additional 24 h. The resultant product was washed with ethanol (40 mL x 10 times) and dried on a rotary evaporator to give Pd–Fe₃O₄ NPs (440.0 mg, 36% yield based on PdCl₂).

Synthesis of Co–Fe₃O₄ NPs

Initially, 23.8 mg of $CoCl_2 \cdot 6H_2O$ (0.30 mmol) and 200 mg of PVP (0.020 mmol) were placed in 4.0 mL of water in a 10 mL round-bottom flask. This solution was sonicated for 1 min and stirred for 30 min at 60 °C. Meanwhile, 100 mg of Fe₃O₄ NPs was added to 30 mL of water in a two-necked 100 mL round-bottom flask. The prepared precursor solution was then injected dropwise to Fe₃O₄ NPs in 30 mL of water, followed by dropwise addition of 30 mg of sodium borohydride (0.79 mmol) in 4.0 mL of water. The mixture was stirred at 60 °C for an additional 24 h. The resultant product was washed with ethanol (40 mL x 10 times) and dried on a rotary evaporator to give Co–Fe₃O₄ NPs (98.5 mg, 30% yield based on CoCl₂·6H₂O).

Synthesis of Pd_xCo_y–Fe₃O₄ NPs

For $Pd_xCo_y-Fe_3O_4$ synthesis, the same method used for the synthesis of $PdCo-Fe_3O_4$ NPs was employed, with different quantities of metals. To prepare Pd_{0.26}Co₁–Fe₃O₄ NPs, PdCl₂ (6.6 mg, 0.038 mmol) with PVP (0.0060 mmol), CoCl₂ 6H₂O (35.7 mg, 0.15 mmol) with PVP (0.010 mmol), and sodium borohydride (0.79 mmol) were used. For the synthesis of Pd_{0.46}Co₁–Fe₃O₄ NPs, PdCl₂ (11.1 g, 0.063 mmol) with PVP (0.010 mmol), CoCl₂·6H₂O (35.7 mg, 0.15 mmol) together with PVP (0.010 mmol), and sodium borohydride (0.79 mmol) were used. In the case of Pd₁Pd_{0.45}-Fe₃O₄ NPs, PdCl₂ (17.7 mg, 0.10 mmol) with PVP (0.020 mmol), CoCl₂ 6H₂O (18.2 mg, 0.077 mmol) with PVP (0.0050 mmol), and sodium borohydride (0.79 mmol) were used. Finally, for the preparation of $Pd_1Co_{0.28}$ -Fe₃O₄ NPs, PdCl₂ (17.7 mg, 0.10 mmol) with PVP (0.020 mmol), CoCl₂·6H₂O (11.1 mg, 0.047 mmol) with PVP (0.0030 mmol), and sodium borohydride (0.79 mmol) were used. Meanwhile, 100 mg of Fe₃O₄ NPs were added to 30 mL of water in a two-necked 100 mL round-bottom flask and then sonicated for 10 min. The prepared Pd precursor solution in 4.0 mL of EG was then injected dropwise onto the Fe₃O₄ suspension with vigorous stirring. After 5 min, the Co precursor solution in 4.0 mL of water was added and sodium borohydride in 4.0 mL of water was injected dropwise. The resulting mixture was stirred for 24 h at 60 °C. Subsequently, the Pd_xCo_v alloy on Fe₃O₄

nanoparticles was retrieved via sonication and washing with ethanol (40 mL x 10 times) and dried on a rotary evaporator to give $Pd_{0.26}Co_1-Fe_3O_4$ NPs (99.0 mg, 59% yield based on PdCl₂), $Pd_{0.46}Co_1-Fe_3O_4$ NPs (96.0 mg, 57% yield based on PdCl₂), $Pd_1Co_{0.45}-Fe_3O_4$ NPs (98.0 mg, 42% yield based on CoCl₂·6H₂O), and Pd_1Co_{0.28}-Fe_3O_4 NPs (98.0 mg, 69% yield based on CoCl₂·6H₂O).

3. Supplementary reaction optimization data

Table S1. Solvent screening^a

	1a (0.20 mmc	Ph PdCo-Fe ₃ O ₄ (2.0 H ₂ (1.0 atm) Solvent, r. t., 18	$\frac{1}{3 h}$	H Ph 2a	
Entry	Solvent	Conversion (%) ^b	1a (%)⁵	Aniline (%) ^b	Yield (%) ^b
1	MeOH	99	1	16	71
2	EtOH	99	1	13	75
3	<i>t</i> BuOH	99	1	0	77
4	H ₂ O	97	3	10	85
5	THF	99	1	0	72
6	DMF	99	1	0	83
7	DMA	99	1	0	95
8	Acetone	99	1	0	84
9	HFIP	100	0	72	N. D. ^c
10	CH ₃ CN	99	1	0	74

^a Reaction conditions: **1a** (0.20 mmol), PdCo–Fe₃O₄ (2.0 mol%) H₂ (1.0 atm), solvent (1.0 mL), r. t., 18 h.

^b Determined from GC analysis through the use of mesitylene as an internal standard.

^cN. D. = not detected.

Table S2. Catalyst screening^a

	1a (0.20 mmol)	Catalyst (2.0 mo H ₂ (1.0 atm) DMA, r. t., 18	bl%) h ►	H N Ph 2a	
Entry	Catalyst (mol%)	Conversion (%) [⊳]	1a (%) ^ь	Aniline (%)⁵	Yield (%) [⊳]
1	Fe ₃ O ₄	0	100	0	N. D.℃
2 ^d	Pd/C (4.0)	100	0	>99	N. D.
3	Pd–Fe ₃ O ₄ (4.0)	60	40	0	60
4	Co–Fe ₃ O ₄ (4.0)	0	100	0	N. D.
5	PdCo-Fe ₃ O ₄ (2.0)	99	1	0	95
6	Pd–Fe ₃ O ₄ (2.0) + Co–Fe ₃ O ₄ (2.0)	72	28	0	72

^a Reaction conditions: **1a** (0.20 mmol), catalyst (x mol%) H₂ (1.0 atm), DMA (1.0 mL), r. t., 18 h.

^b Determined from GC analysis through the use of mesitylene as an internal standard.

[°]N. D. = not detected. ^d Byproducts generated from hydrogenolysis were detected.

	N≫Ph_	PdCo-Fe ₃ H ₂ (1 DMA,	<mark>O₄ (x mol%)</mark> .0 atm) r. t., 18 h	H N V Ph	
	1a (0.20 mmol)			2a	
Entry	Catalyst loading (mol%)	TONc	Conversion (%) ^b	1a (%) ^b	Yield (%) ^b
1 ^d	0.01	550	21	79	11
2 ^e	0.03	1583	100	4	95
3 ^f	0.05	910	100	3	91
4 9	0.10	440	100	3	88
5	0.50	98	100	0	98
6	1.0	50	100	0	>99
7	1.5	30	100	0	91
8	2.0	24	99	1	95

Table S3. Catalyst loading screening^a

r

^a Reaction conditions: **1a** (0.20 mmol), PdCo–Fe₃O₄ (x mol%), H₂ (1.0 atm), DMA (1.0 mL), r. t., 18 h.

^b Determined from GC analysis analysis through the use of mesitylene as an internal standard. ^c Turnover number (TON)=mmol of product/mmol of total metal except Fe

^d Result with **1a** (10 mmol), DMA (3.0 mL), 52 h.

^e Result with **1a** (3.3 mmol), DMA (1.0 mL), 78 h.

^f Result with **1a** (2.0 mmol), DMA (1.0 mL), 48 h.

^g Result with **1a** (1.0 mmol), DMA (1.0 mL), 48 h.

Table S4. Reductant screening^a

N≫ ^{Ph}	PdCo-Fe ₃ O ₄ (2.0 mol%) Reductant	H N Ph
	<i>t</i> BuOH, r. t., 18 h	
1a (0.20 mmol)		2a

Entry	Reductant	Conversion (%) ^b	1a (%) ^ь	Aniline (%) ^b	Yield (%) ^b
1	PhSiH ₃	90	10	12	54
2	$BH_{3}NH_{3}$	69	31	7	56
3	NaBH ₄	23	77	6	17

^a Reaction conditions: **1a** (0.20 mmol), PdCo–Fe₃O₄ (x mol%), *t*BuOH (1.0 mL), reductant (3.0 equiv), r. t., 18 h.

^b Determined from GC analysis analysis through the use of mesitylene as an internal standard.

4. Characterization of Catalysts

Figure S1. SEM image of (a) Fe_3O_4 NPs; (b) PdCo– Fe_3O_4 NPs; (c) Pd– Fe_3O_4 NPs; and (d) Co– Fe_3O_4 NPs

	`
10	1
۱a	
1	1

(b)

Base(3)

1	~	۱
L	C)
١.		,

Base(5)

Figure S2. (a) SEM-EDS images of PdCo–Fe₃O₄ NPs; (b) SEM-EDS images of Pd– Fe₃O₄ NPs; and (c) SEM-EDS images of Co–Fe₃O₄ NPs

Figure S3. The energy disperse spectroscopy (EDS) map sum spectrum pattern of NPs; (a) Pd–Fe₃O₄ NPs; (b) Co–Fe₃O₄ NPs; and (c) PdCo–Fe₃O₄ NPs

(a)

(c)

Figure S4. HR-TEM images of (a) and (b) Fe_3O_4 NPs; (c) and (d) Pd-Fe₃O₄ NPs; (e) and (f) Co-Fe₃O₄ NPs; (g) and (h) PdCo-Fe₃O₄ NPs

(e)

(h)

Figure S5. (a), (c), (e), and (g) BF-STEM images of PdCo–Fe₃O₄ NPs; (b), (d), (f), and (h) HADDF-STEM images of PdCo–Fe₃O₄ NPs

50 mm

(d) S24

Figure S6. HR-TEM images and particle distribution of (a) PdCo–Fe₃O₄ NPs; (b) PdCo– TiO₂ NPs; (c) PdCo–CeO₂ NPs; and (d) PdCo–C NPs

Figure S7. EELS spectra of (a) oxygen K edge of PdCo–Fe₃O₄ NPs; (b) iron and cobalt L edge of PdCo–Fe₃O₄ NPs

Figure S8. XRD data of (a) $Pd-Fe_3O_4$ NPs; (b) $Co-Fe_3O_4$ NPs; (c) $PdCo-Fe_3O_4$ NPs; and (d) Comparison of XRD peaks of the catalysts

(c)

(d)

Figure S9. XPS data of (a) Pd 3d spectra of Pd–Fe₃O₄ NPs; (b) Co 2p spectra of Co– Fe₃O₄ NPs; (c) Pd 3d spectra of PdCo–Fe₃O₄ NPs; (d) Co 2p spectra of PdCo–Fe₃O₄ NPs; (e) Pd 3d spectra of PdCo–Fe₃O₄ NPs after 1 catalytic cycle; and (f) Co 2p spectra of PdCo-Fe₃O₄ NPs after 1 catalytic cycle

Figure S10. Fourier transform infrared (FTIR) spectra of (a) Fe_3O_4 NPs; (b) Pd–Fe₃O₄ NPs; (c) Co–Fe₃O₄ NPs; and (d) PdCo–Fe₃O₄ NPs

Catalyst	Pd (wt%)	Co (wt%)
PdCo-Fe ₃ O ₄	7.49	3.89
$Pd-Fe_3O_4$	5.67	-
Co–Fe ₃ O ₄	-	4.31
PdCo–Fe ₃ O ₄ (after 1 st reaction)	7.34	3.23
PdCo–Fe ₃ O ₄ (after 14 th reaction)	1.69	0.28

Figure S11. ICP-AES data of PdCo– Fe_3O_4 NPs, Pd– Fe_3O_4 NPs, Co– Fe_3O_4 NPs, PdCo– Fe_3O_4 NPs after the first reaction, and PdCo– Fe_3O_4 NPs after the 14th reaction

5. Supplementary data

1		١.
1	n	۱.
L	IJ	
۰.	~	1

Base(9)

1		۰
1		۱
L	L	
١	-	,

Base(11)

52991 65535

1	Ч	۱
L	u)
۰.		

Base(13)

(e)				
Catalyst	Pd (wt%)	Co (wt%)	Molar ratio	
Pd _{0.26} Co ₁ -Fe ₃ O ₄	2.39	5.07	0.26:1	
$Pd_{_{0.46}}Co_{_{1}}-Fe_{_{3}}O_{_{4}}$	4.01	4.86	0.46:1	
Pd ₁ Co ₁ -Fe ₃ O ₄	7.41	4.15	0.99:1	
$Pd_{1}Co_{0.45}-Fe_{3}O_{4}$	7.79	1.94	1:0.45	
$Pd_1Co_{0.28}-Fe_3O_4$	6.21	0.97	1:0.28	

Figure S12. SEM and EDS images of (a) $Pd_{0.26}Co_1-Fe_3O_4$ NPs; (b) $Pd_{0.46}Co_1-Fe_3O_4$ NPs; (c) $Pd_1Co_{0.45}-Fe_3O_4$ NPs; (d) $Pd_1Co_{0.28}-Fe_3O_4$ NPs; and (e) ICP-AES data of $Pd_xCo_y-Fe_3O_4$ NPs

(c)

Figure S13. Recycling data of (a) $Pd_{0.26}Co_1-Fe_3O_4$ NPs; (b) $Pd_{0.46}Co_1-Fe_3O_4$ NPs; (c) $Pd_1Co_1-Fe_3O_4$ NPs; and (d) $Pd_1Co_{0.28}-Fe_3O_4$ NPs

Figure S14. SEM images of PdCo–Fe₃O₄ NPs after 18 h under 0.20 mmol *N*-benzylideneaniline, 2.0 mol% PdCo–Fe₃O₄ after (a) 1^{st} reaction; (b) 14^{th} reaction

(d)

Figure S15. HR-TEM images of (a) and (b) fresh PdCo– Fe_3O_4 NPs; (c) and (d) PdCo– Fe_3O_4 NPs after 1 catalytic cycle; (e) and (f) PdCo– Fe_3O_4 NPs after 14 catalytic cycles

(c)

Figure S16. SEM images of (a) PdCo–TiO₂ NPs; (b) PdCo–CeO₂ NPs; and (c) PdCo–C NPs

Catalyst	Pd (wt%)	Co (wt%)	Pd:Co
PdCo-TiO ₂	5.74	3.45	0.92:1
PdCo-CeO ₂	6.27	4.86	0.71:1
PdCo-C	4.84	3.25	0.82:1

Table S5. ICP-AES data of PdCo NPs with different supports

^R ∕∽ ^N ≫ ^{Ph} _	Catalyst H ₂ (1.0 atm)	
	DMA, r. t., 18 h	
1 (0.20 mmol)		2

Table S6. Yield comparison of monometallic catalysts with other substrates

Entra		Catalyst	Product Yield with various R group (%) ^b				
Entry ^a	Н		2-Me	4-OMe	4-F	2-CF ₃	
	1 ^c	Pd	72	75	65	49	66
	2 ^d	Со	N. D. ^g	N. D. ^g	N. D. ^g	N. D. ^g	N. D. ^g
	3 ^e	Pd + Co	85	68	81	65	72
	4 ^f	PdCo	98	86	96	92	78

^a Reaction conditions: **1** (0.20 mmol), catalyst, H₂ (1.0 atm), DMA (1.0 mL), r. t., 18 h.

^b Determined from ¹H NMR spectral analysis through the use of anisole as an internal standard.

 $^{\circ}$ Pd–Fe₃O₄ (1.0 mol%) was used as a catalyst. d Co–Fe₃O₄ (1.0 mol%) was used as a catalyst.

^e Pd–Fe₃O₄ (0.50 mol%), Co–Fe₃O₄ (0.50 mol%) were used as a catalyst.

 $^{\rm f}$ PdCo–Fe₃O₄ (0.50 mol%) was used as a catalyst.

 g N. D = not detected.

Figure S17. Initial kinetic data of *N*-benzylideneaniline (0.20 mmol scale) reduction with $Pd-Fe_3O_4$ NPs (1.0 mol%), Co-Fe_3O_4 NPs (1.0 mol%), a mixture of $Pd-Fe_3O_4$ NPs (0.05 mol%) and Co-Fe_3O_4 NPs (0.05 mol%), and $PdCo-Fe_3O_4$ NPs (0.50 mol%)

6. Characterization of Products

N-Benzylaniline (2a)

Yellow oil. The compound was identified by spectral comparison with literature data.^[2] ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.31 (m, 4H), 7.27 (t, J = 6.8 Hz, 1H), 7.17 (t, J = 7.9 Hz, 2H), 6.71 (t, J = 7.3 Hz, 1H), 6.63 (d, J = 7.9 Hz, 2H), 4.32 (s, 2H), 4.05 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 148.26, 139.55, 129.40, 128.76, 127.65, 127.36, 117.71, 112.99, 48.47.

N-Benzyl-4-methylaniline (2b)

Orange oil. The compound was identified by spectral comparison with literature data.^[2] ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.31 (m, 4H), 7.26 – 7.24 (m, 1H), 6.98 (d, J = 8.1 Hz, 2H), 6.56 (d, J = 8.3 Hz, 2H), 4.30 (s, 2H), 3.91 (s, 1H), 2.23 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 146.05, 139.79, 129.87, 128.73, 127.62, 127.28, 126.88, 113.12, 48.78, 20.53.

N-Benzyl-2-methylaniline (2c)

Yellow oil. The compound was identified by spectral comparison with literature data.^[2] ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.31 (m, 4H), 7.28 – 7.25 (m, 1H), 7.10 – 7.05 (m, 2H), 6.66 (t, J = 7.3 Hz, 1H), 6.60 (d, J = 7.9 Hz, 1H), 4.35 (s, 2H), 3.83 (s, 1H), 2.14 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 146.18, 139.63, 130.18, 128.76, 127.35, 127.27, 122.02, 117.31, 110.12, 48.43, 17.64.

N-Benzyl-2,6-dimethylaniline (2d)

Yellow oil. The compound was identified by spectral comparison with literature data.^[3] ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.27 (m, 5H), 7.00 (d, J = 7.4 Hz, 2H), 6.86 – 6.82 (m, 1H), 4.10 (s, 2H), 3.20 (s, 1H), 2.27 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 146.00, 140.54, 129.93, 128.95, 128.69, 128.08, 127.39, 122.30, 52.97, 18.61.

N-Benzyl-4-methoxyaniline (2e)

Yellow oil. The compound was identified by spectral comparison with literature data.^[2] ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.25 (m, 5H), 6.76 (d, J = 8.7 Hz, 2H), 6.58 (d, J = 8.8 Hz, 2H), 4.26 (s, 2H), 3.72 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.29, 142.57, 139.81, 128.69, 127.64, 127.26, 115.02, 114.20, 55.90, 49.34.

N-Benzyl-4-fluoroaniline (2f)

Yellow oil. The compound was identified by spectral comparison with literature data.^[2] ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.37 (m, 5H), 6.86 (t, J = 8.6 Hz, 2H), 6.55 – 6.52 (m, 2H), 4.26 (s, 2H), 3.90 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 156.97, 155.09, 144.63, 139.39, 128.79, 127.60, 127.43, 115.87, 115.69, 113.81, 113.75, 49.07. ¹⁹F NMR (376 MHz, CDCl₃) δ -127.88 – -127.95 (m).

N-Benzyl-2,4-difluoroaniline (2g)

Yellow oil. The compound was identified by spectral comparison with literature data.^[4] ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.27 (m, 5H), 6.82 – 6.76 (m, 1H), 6.70 (t, J = 8.6 Hz, 1H), 6.60 – 6.54 (m, 1H), 4.34 (s, 2H), 4.15 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 155.42, 155.38, 153.58, 153.49, 151.97, 138.93, 128.87, 127.58, 127.50, 112.35 (dd, J = 8.8, 4.2 Hz), 110.73 (dd, J = 21.6, 3.3 Hz), 103.57 (dd, J = 26.6, 22.5 Hz), 48.46. ¹⁹F NMR (376 MHz, CDCl₃) δ -125.93 – -125.99 (m), -132.15 – -132.21 (m).

N-Benzyl-2-(trifluoromethyl)aniline (2h)

Yellow oil. The compound was identified by spectral comparison with literature data.^[5] ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 7.8 Hz, 1H), 7.35 – 7.25 (m, 6H), 6.73 – 6.67 (m, 2H), 4.80 (s, 1H), 4.41 (d, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 145.48, 145.47, 138.55, 133.24, 128.93, 127.56, 127.24, 126.73 (q, J = 5.6 Hz), 124.01, 116.30, 113.78, 113.49, 112.30, 47.79. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.47.

N-Benzyl-4-chloroaniline (2i)

Yellow oil. The compound was identified by spectral comparison with literature data.^[2] ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, J = 4.3 Hz, 4H), 7.28 (dd, J = 8.7, 4.3 Hz, 1H), 7.10 (d, J = 8.8 Hz, 2H), 6.54 (d, J = 8.8 Hz, 2H), 4.30 (s, 2H), 4.08 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 146.77, 139.06, 129.20, 128.84, 127.54, 127.51, 122.24, 114.04, 48.48.

N-(3-Methoxybenzyl)aniline (2j)

Yellow oil. The compound was identified by spectral comparison with literature data.^[6] ¹H NMR (400 MHz, CDCl₃) δ 7.24 (t, J = 7.8 Hz, 1H), 7.16 (t, J = 7.7 Hz, 2H), 6.97 – 6.90 (m, 2H), 6.81 (d, J = 8.1 Hz, 1H), 6.71 (t, J = 7.2 Hz, 1H), 6.62 (d, J = 7.9 Hz, 2H), 4.29 (s, 2H), 4.02 (s, 1H), 3.78 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.00, 148.24, 141.28, 129.76, 129.36, 119.83, 117.68, 113.12, 112.96, 112.74, 55.31, 48.41.

3-((Phenylamino)methyl)phenol (2k)

Yellow oil. The compound was identified by spectral comparison with literature data.^[4] ¹H NMR (400 MHz, CDCl₃) δ 7.19 – 7.14 (m, 3H), 6.89 (d, J = 7.5 Hz, 1H), 6.79 (s, 1H), 6.73 – 6.69 (m, 2H), 6.61 (d, J = 7.7 Hz, 2H), 4.24 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 156.05, 148.08, 141.45, 129.98, 129.41, 119.77, 117.91, 114.35 (d, J = 7.2 Hz), 113.18, 48.22.

3-((Phenylamino)methyl)benzene-1,2-diol (2l)

Dark red oil.

¹H NMR (400 MHz, CDCl₃) δ 7.25 (t, J = 7.6 Hz, 2H), 6.93 (t, J = 7.4 Hz, 1H), 6.89 – 6.84 (m, 3H), 6.78 (t, J = 7.8 Hz, 1H), 6.70 (d, J = 7.5 Hz, 1H), 4.41 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 147.16, 145.06, 143.78, 129.54, 123.07, 121.32, 120.49, 119.67, 116.29, 114.53, 48.97. HRMS (ESI) calculated for C₁₃H₁₃NO₂ [M]⁺ 215.0946, found 215.0946.

N-(4-Fluorobenzyl)aniline (2m)

Yellow oil. The compound was identified by spectral comparison with literature data.^[7] ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.40 (m, 2H), 7.17 (t, J = 7.9 Hz, 2H), 7.01 (t, J = 8.7 Hz, 2H), 6.72 (t, J = 7.3 Hz, 1H), 6.61 (d, J = 7.8 Hz, 2H), 4.29 (s, 2H), 4.01 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.38, 160.95, 148.06, 135.24, 135.21, 129.42, 129.16, 129.08, 117.86, 115.67, 115.46, 112.99, 47.74. ¹⁹F NMR (376 MHz, CDCl₃) δ -115.61 – -115.76 (m).

N-(4-(Trifluoromethyl)benzyl)aniline (2n)

Yellow oil. The compound was identified by spectral comparison with literature data.^[8] ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 7.9 Hz, 2H), 7.46 (d, J = 7.9 Hz, 2H), 7.16 (t, J = 7.9 Hz, 2H), 6.72 (t, J = 7.3 Hz, 1H), 6.59 (d, J = 7.7 Hz, 2H), 4.38 (s, 2H), 4.10 (s, 1H. ¹³C NMR (126 MHz, CDCl₃) δ 147.81, 143.90, 129.70, 129.47, 127.56, 125.68 (q, J = 3.6 Hz), 123.26, 118.09, 113.03, 47.91. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.40.

N-(3-(Trifluoromethyl)benzyl)aniline (20)

Yellow oil. The compound was identified by spectral comparison with literature data.^[9] ¹H NMR (400 MHz, CDCl₃) δ 7.63 (s, 1H), 7.57 – 7.52 (m, 2H), 7.44 (t, J = 7.7 Hz, 1H), 7.18 (t, J = 7.9 Hz, 2H), 6.74 (t, J = 7.3 Hz, 1H), 6.62 (d, J = 7.9 Hz, 2H), 4.39 (s, 2H), 4.10 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 147.87, 140.77, 131.24, 130.98, 130.77, 129.47, 129.22, 124.25, 124.23, 124.20, 124.17, 118.14, 113.07, 48.07. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.58.

N-(4-(Pyridin-2-yl)benzyl)aniline (2p)

Pale yellow solid. The compound was identified by spectral comparison with literature data.^[10]

¹H NMR (400 MHz, CDCl₃) δ 8.68 (d, J = 4.8 Hz, 1H), 7.97 (d, J = 8.1 Hz, 2H), 7.77 – 7.68 (m, 2H), 7.47 (d, J = 8.0 Hz, 2H), 7.25 – 7.15 (m, 3H), 6.72 (t, J = 7.3 Hz, 1H), 6.65 (d, J = 7.7 Hz, 2H), 4.39 (s, 2H), 4.11 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 157.32, 149.81, 148.21, 140.51, 138.57, 136.86, 129.40, 127.93, 127.31, 122.19, 120.56, 117.78, 113.07.

N-(4-((Phenylamino)methyl)phenyl)acetamide (2q)

Pale yellow solid. The compound was identified by spectral comparison with literature data.^[11]

¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 8.2 Hz, 2H), 7.22 (s, 1H), 7.17 (t, J = 7.8 Hz, 2H), 6.71 (t, J = 7.2 Hz, 1H), 6.62 (d, J = 7.9 Hz, 2H), 4.29 (s, 2H), 4.05 (s, 1H), 2.17 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.41, 148.16, 137.00, 135.55, 129.39, 128.25, 120.29, 117.73, 112.99, 47.96, 24.75.

II. References

- [1] A. K. Chakraborti, S.Bhagat, S. Rudrawar, Tetrahedron Lett 2004, 45, 7641–7644.
- [2] L. M. Broomfield, Y. Wu, E. Martin, A. Shafir, *Adv. Synth. Catal.* **2015**, 357, 3538–3548.

[3] F. -D. Huang, C. Xu, D. -D. Lu, D. -S. Shen, T. Li, F. -S. Liu, *J. Org. Chem.* **2018**, 83, 9144–9155.

- [4] W. Yang, L. Wei, F. Yi, M. Cai, Catal. Sci. Technol., 2016, 6, 4554–4564.
- [5] K. Naksomboon, J. Poater, F. M. Bickelhaupt, M. Á. F. -Ibáñez, J. Am. Chem. Soc.
 2019, 141, 6719–6725.
- [6] Y. Du, S. Oishi, S. Saito, Chem. Eur. J. 2011, 17, 12262–12267.
- [7] A. Cho, S. Byun, B. M. Kim, Adv. Synth. Catal. 2018, 360, 1253–1261.
- [8] R. Adam, J. R. C. -Antonino, K. Junge, R. Jackstell, M. Beller, *Angew. Chem. Int. Ed.* **2016**, *55*, 11049–11053.
- [9] C. Lu, Z. Qiu, M. Xuan, Y. Huang, Y. Lou, Y. Zhu, H. Shen, B. -L. Lin, *Adv. Synth. Catal.* **2020**, *362*, 4151–4158.
- [10] F. Kallmeier, R. Fertig, T. Irrgang, R. Kempe, *Angew. Chem. Int. Ed.* **2020**, *59*, 11789–11793.
- [11] S. C. A. Sousa, A. C. Fernandes, Adv. Synth. Catal. 2010, 352, 2218–2226.

III. NMR spectra

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

S59

-2

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

