Electronic Supplementary Material (ESI)

This journal is © The Royal Society of Chemistry 2021

Copper-assisted preparation of pyridinyl sulfonate esters from

hydroxypyridines and sodium sulfinates

Qian Li,^a Haibo Zhu,^{*a,b} Yishuai Liu,^a Liu Yang,^a Qiangwen Fan,^{*a,c} Zongbo Xie,^{*a} Zhang-Gao Le^a

- ^{*a*} Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry, Biology and Material Science, East China University of Technology, 330013, Nanchang, China.
- ^b Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices,East China University of Technology, Nanchang, 330013, China.
- ^c Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013.

E-mail: hbzhu@ecut.edu.cn, fanqw2019@ecut.edu.cn, zbxie@ecut.edu.cn

Table of Contents

1. General	1
2. Experimental sections	2
2.1 General Procedures for synthesis of compound of 3a	2
2.2 General procedure for Sodium sulfinate synthesis. (2b-2i)	2
2.3 Optimization of reaction conditions.	3
3. Data for the sulfonate esters products	5
4. ¹ H NMR and ¹³ C NMR spectra for compounds	13
5. References	41

1. General

Unless otherwise stated, all reagents and solvents were purchased from commercial suppliers and used without further purification. $CDCl_3$ was purchased from Shanghai aladdin Biochemical Technology Co., Ltd. All test tubes and sealed vessels (50 mL) were purchased from Beijing Synthware Glass. The following abbreviations were used to describe NMR signals: s = singlet, d = doublet, t = triplet, m = mulitplet, dd = doublet of doublets, q = quartet.

2. Experimental sections

2.1 General Procedures for synthesis of compound of **3a**.

Add 2-hydroxypyridine (1a) (0.2 mmol), sodium 4-methylbenzenesulfinate (2a) (0.3 mmol) and CuBr₂ (1.0 equiv.) followed by 2 mL of MeCN to a 35ml test tube, the mixture was stirred at 90 °C for 6 hours. After cooling to room temperature, directly purified by flash chromatography (petroleum/ethyl acetate 4:1) to give the desired product 3a.

2.2 General procedure for Sodium sulfinate synthesis. (2b-2i)¹

Sodium 3-methylbenzenesulfinate (**2b**) was prepared by heating 2.04 g of 3ethylbenzenesulphonyl chloride, 2.5 g of sodium sulfite and 1.7 g of sodium bicarbonate in 5 mL of water at 70 °C for 4 h. After cooling to room temperature, water was removed under vacuum. The residue was extracted by ethanol. The pure product (white solid) was obtained via recrystallization. Similarly, **2c-2i** were prepared from the corresponding sulphonyl chlorides.

2.3 Optimization of reaction conditions.

$ \begin{array}{c} & & \\ & & $						
1a	2a		3a			
Entry	Additive	Solvent	Yield $(\%)^b$			
1	CuBr ₂	CH ₃ CN	24			
2	Cu(OTf) ₂	CH ₃ CN	trace			
3	CuCl ₂	CH ₃ CN	trace			
4	$Cu(OAc)_2$	CH ₃ CN	trace			
5	CuBr	CH ₃ CN	trace			
6	CuI	CH ₃ CN	0			
7	CuO	CH ₃ CN	0			
8	PdCl ₂	CH ₃ CN	0			
9	$Pd(OAc)_2$	CH ₃ CN	0			
10	Ni(OTf) ₂	CH ₃ CN	0			
11	NiCl ₂	CH ₃ CN	0			
12	NHC-Cu	CH ₃ CN	0			
13	NHC-Pd	CH ₃ CN	0			
14	FeCl ₂	CH ₃ CN	0			
15	FeCl ₃	CH ₃ CN	0			
16	CuBr ₂	DMF	0			
17	CuBr ₂	DMSO	0			
18	CuBr ₂	1,4-Dioxane	trace			
19	CuBr ₂	Toluene	trace			
20	CuBr ₂	EtOH	trace			
21	CuBr ₂	H_2O	0			
22	CuBr ₂	DCE	12			

Table S1 Additive and Solvent Screening^a

^{*a*} Reaction conditions: **1a** (0.20 mmol), **2a** (0.20 mmol), additive (0.2 equiv.) in 2 mL solvent under air at 90 °C for 24 hours. ^{*b*} Isolated yield.

Table S2Ligand Screening^a

	$ \begin{array}{c} & & & \\ & &$	N
Entry	Ligand	Yield $(\%)^b$
1	4,7-Dimethoxy-1,10-phenanthroline	trace
2	4,4'-Dimethyl-2,2'-bipyridyl	trace
3	4,4'-Dimethoxy-2,2'-bipyridyl	25
4	1,10-phenanthroline	20
5	2,2'-Bipyridine	trace
6	3,4,7,8-Tetramethyl-1,10-phenanthroline	trace
7	4,4'-Di-tert-butyl-2,2'-bipyridine	18

^{*a*} Reaction conditions: **1a** (0.20 mmol), **2a** (0.20 mmol), Ligand (20 mol%), CuBr₂ (0.2 equiv.) in 2 mL solvent under air at 90 °C for 24 hours. ^{*b*} Isolated yield.

Table S3 Variation of molar ratio, time and the amount of additive in optimization of reaction conditions^a

$ \begin{array}{c c} & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ $							
	1a 2a		За				
Entry	CuBr ₂ (equiv.)	Time (h)	1a:2a (mmol)	Yield $(\%)^b$			
1	0.2	24	0.3:0.2	20			
2	0.2	24	0.2:0.3	36			
3	0.2	24	0.2:0.4	21			
4	0.2	36	0.2:0.3	31			
5	0.2	12	0.2:0.3	34			
6	0.2	6	0.2:0.3	42			
7	0.2	3	0.2:0.3	14			
8°	0.2	6	0.2:0.3	20			
9 ^d	0.2	6	0.2:0.3	24			
10	0.5	6	0.2:0.3	48			
11	1.0	6	0.2:0.3	78			
12	1.5	6	0.2:0.3	45			

^{*a*} Reaction conditions: **1a**, **2a** and CuBr₂ in 2 mL solvent under air at 90 °C. ^{*b*} Isolated yield. ^{*c*} 70°C. ^{*d*} 120 °C.

3. Data for the sulfonate esters products.

pyridin-2-yl 4-methylbenzenesulfonate (3a)²

Colorless solid; mp (48.9-51.2°C); ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, *J* = 3.5 Hz, 1H), 7.89 (d, *J* = 8.1 Hz, 2H), 7.77 (t, *J* = 7.7 Hz, 1H), 7.34 (d, *J* = 8.1 Hz, 2H), 7.24 – 7.18 (m, 1H), 7.11 (d, *J* = 8.1 Hz, 1H), 2.45 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 156.98, 148.37, 145.27, 140.13, 133.64, 129.90, 128.63, 122.67, 116.05, 22.06.

pyridin-2-yl 3-methylbenzenesulfonate (3b)

colorless liquid, ¹H NMR (500 MHz, CDCl₃) δ 8.27 (d, J = 6.8 Hz, 1H), 7.83 (s, 1H), 7.79 (m, J = 13.6, 7.6 Hz, 2H), 7.45 (m, J = 15.3, 7.7 Hz, 2H), 7.23 (dd, J = 7.3, 4.9 Hz, 1H), 7.12 (d, J = 8.2 Hz, 1H), 2.44 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 156.91, 148.37, 140.16, 139.44, 136.45, 135.04, 128.94, 128.77, 125.69, 122.72, 115.94, 21.35; HRMS (ESI) calcd for C₁₂H₁₁NO₃S (M + H)⁺ 250.0532, found 250.0535.

pyridin-2-yl 2-methylbenzenesulfonate (3c)

colorless liquid, ¹H NMR (500 MHz, CDCl₃) δ 8.21 (d, J = 6.5 Hz, 1H), 7.97 (d, J = 7.9 Hz, 1H), 7.76 (t, J = 8.6 Hz, 1H), 7.53 (t, J = 7.5 Hz, 1H), 7.39 (d, J = 7.6 Hz, 1H), 7.31 (t, J = 7.7 Hz, 1H), 7.20 (dd, J = 7.3, 4.9 Hz, 1H), 7.13 (d, J = 8.2 Hz, 1H), 2.80 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 156.80, 148.45, 140.10, 138.87, 135.31, 134.12, 132.55, 130.19, 126.11, 122.72, 115.85, 20.58; HRMS (ESI) calcd for C₁₂H₁₁NO₃S (M + H)⁺ 250.0532, found 250.0532.

pyridin-2-yl benzenesulfonate (3d)³

colorless liquid, ¹H NMR (500 MHz, CDCl₃) δ 8.25 (d, J = 6.7 Hz, 1H), 8.02 (d, J = 8.2 Hz, 2H), 7.81 – 7.75 (m, 1H), 7.67 (t, J = 7.5 Hz, 1H), 7.56 (t, J = 7.9 Hz, 2H), 7.23 (dd, J = 7.3, 4.9 Hz, 1H), 7.11 (d, J = 8.2 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 156.92, 148.34, 140.21, 136.67, 134.22, 129.11, 128.57, 122.77, 115.90.

pyridin-2-yl 4-methoxybenzenesulfonate (3e)⁴

colorless liquid, ¹H NMR (500 MHz, CDCl₃) δ 8.26 (d, *J* = 6.4 Hz, 1H), 7.93 (d, *J* = 8.9 Hz, 2H), 7.77 (t, *J* = 7.8 Hz, 1H), 7.22 (dd, *J* = 7.2, 5.0 Hz, 1H), 7.10 (d, *J* = 8.2 Hz, 1H), 7.00 (d, *J* = 8.9 Hz, 2H), 3.88 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 164.11, 157.01, 148.32, 140.13, 130.91, 127.83, 122.63, 115.96, 114.29, 55.76.

pyridin-2-yl 4-(tert-butyl)benzenesulfonate (3f)

colorless liquid, ¹H NMR (500 MHz, CDCl₃) δ 8.28 (d, J = 6.4 Hz, 1H), 7.94 (d, J = 8.6 Hz, 2H), 7.78 (t, J = 7.8 Hz, 1H), 7.56 (d, J = 8.9 Hz, 2H), 7.23 (dd, J = 7.3, 4.9 Hz, 1H), 7.13 (d, J = 8.2 Hz, 1H), 1.35 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 158.19, 156.98, 148.35, 140.14, 133.59, 128.43, 126.15, 122.66, 115.95, 35.36, 31.04; HRMS (ESI) calcd for C₁₅H₁₇NO₃S (M + H)⁺ 292.1002, found 292.1008.

pyridin-2-yl 4-(trifluoromethyl)benzenesulfonate (3g) colorless liquid, ¹H NMR (500 MHz, CDCl₃) δ 8.24 (dd, J = 4.8, 1.8 Hz, 1H), 8.19 (d,

J = 8.4 Hz, 2H), 7.83 (m, J = 13.5, 8.0 Hz, 3H), 7.27 – 7.24 (m, 1H), 7.15 (d, J = 8.2 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 156.89, 148.25, 140.51, 140.48, 135.56 (q, JC-F=33.26 Hz), 129.26, 126.22 (q, JC-F=3.65 Hz), 123.02, 132.09 (q, JC-F=273.67 Hz), 115.74; HRMS (ESI) calcd for C₁₂H₈F₃NO₃S (M + H)⁺ 304.0250, found 304.0253.

pyridin-2-yl 4-fluorobenzenesulfonate (3h)

colorless liquid, ¹H NMR (500 MHz, CDCl₃) δ 8.25 (dd, J = 4.7, 1.7 Hz, 1H), 8.09 – 8.03 (m, 2H), 7.80 (ddd, J = 8.1, 7.4, 2.0 Hz, 1H), 7.26 – 7.20 (m, 3H), 7.13 (d, J = 8.2 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 166.00 (d, JC-F = 257.5 Hz), 156.93, 148.28, 140.31, 132.73 (d, JC-F = 3.276 Hz), 131.61 (d, JC-F = 1.248 Hz), 122.84, 116.55, 116.37, 115.88; HRMS (ESI) calcd for C₁₁H₈FNO₃S (M + H)⁺ 254.0282, found 254.0285.

pyridin-2-yl 4-chlorobenzenesulfonate (3i)

colorless liquid, ¹H NMR (500 MHz, CDCl₃) δ 8.24 (dd, J = 4.8, 1.8 Hz, 1H), 7.97 (d, J = 8.6 Hz, 2H), 7.82 – 7.77 (m, 1H), 7.53 (d, J = 8.6 Hz, 2H), 7.24 (dd, J = 6.7, 4.9 Hz, 1H), 7.13 (d, J = 8.2 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 156.88, 148.25, 140.86, 140.30, 135.22, 130.09, 129.40, 122.85, 115.81; HRMS (ESI) calcd for C₁₁H₈CINO₃S (M + H)⁺ 269.9986, found 269.9992.

pyridin-2-yl 4-bromobenzenesulfonate (3j)

colorless liquid, ¹H NMR (500 MHz, CDCl₃) δ 8.24 (d, J = 3.0 Hz, 1H), 7.89 (d, J = 8.6 Hz, 2H), 7.80 (m, J = 7.8 Hz, 1H), 7.70 (d, J = 6.9 Hz, 2H), 7.24 (dd, J = 7.0, 5.2 Hz, 1H), 7.12 (d, J = 8.2 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 156.91, 148.29, 140.35, 135.82, 132.42, 130.15, 129.53, 122.89, 115.89; HRMS (ESI) calcd for

 $C_{11}H_8BrNO_3S (M + H)^+ 313.9481$, found 313.9482.

pyridin-2-yl naphthalene-2-sulfonate (3k)³

Colorless solid; mp (69.6-70.6°C); ¹H NMR (500 MHz, CDCl₃) δ 8.56 (s, 1H), 8.22 (d, J = 4.8 Hz, 1H), 8.00 (s, 2H), 7.96 (d, J = 8.1 Hz, 1H), 7.92 (d, J = 8.2 Hz, 1H), 7.76 (t, J = 7.8 Hz, 1H), 7.67 (t, J = 7.2 Hz, 1H), 7.62 (t, J = 7.3 Hz, 1H), 7.20 (dd, J = 7.1, 5.0 Hz, 1H), 7.13 (d, J = 8.2 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 156.98, 148.38, 140.21, 135.49, 133.54, 131.87, 130.52, 129.58, 129.54, 129.44, 128.04, 127.77, 123.09, 122.76, 115.91; HRMS (ESI) calcd for C₁₅H₁₁NO₃S (M + H)⁺ 286.0532, found 286.0537.

pyridin-2-yl naphthalene-1-sulfonate (3l)

colorless liquid, ¹H NMR (500 MHz, CDCl₃) δ 8.80 (d, J = 8.7 Hz, 1H), 8.29 (d, J = 7.4 Hz, 1H), 8.15 (m, J = 16.0, 6.6 Hz, 2H), 7.96 (d, J = 8.2 Hz, 1H), 7.76 – 7.68 (m, 2H), 7.66 – 7.61 (m, 1H), 7.56 – 7.51 (t, 1H), 7.18 – 7.13 (m, 1H), 7.03 (d, J = 8.2 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 156.91, 148.48, 140.10, 135.72, 134.09, 132.29, 130.81, 128.96, 128.92, 128.59, 127.28, 124.98, 124.01, 122.69, 115.62; HRMS (ESI) calcd for C₁₅H₁₁NO₃S (M + H)⁺ 286.0532, found 286.0532.

pyridin-2-yl methanesulfonate (3m)²

colorless liquid, ¹H NMR (500 MHz, CDCl₃) δ 8.36 (dd, J = 4.9, 1.4 Hz, 1H), 7.87 – 7.81 (m, 1H), 7.30 (dd, J = 6.6, 5.7 Hz, 1H), 7.13 (d, J = 8.2 Hz, 1H), 3.51 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 157.47, 148.11, 140.60, 122.81, 115.72, 40.76.

pyridin-2-yl ethanesulfonate (3n)

colorless liquid, ¹H NMR (500 MHz, CDCl₃) δ 8.35 (dd, J = 4.9, 1.9 Hz, 1H), 7.83 (m, J = 7.8, 1.8 Hz, 1H), 7.28 (m, J = 7.2, 4.8 Hz, 1H), 7.15 (d, J = 8.7 Hz, 1H), 3.69 (q, J = 7.4 Hz, 2H), 1.58 (t, J = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 157.39, 148.19, 140.47, 122.72, 115.93, 48.06, 8.28; HRMS (ESI) calcd for C₇H₉NO₃S (M + H)⁺ 188.0376, found 188.0378.

pyridin-2-yl propane-1-sulfonate (30)

colorless liquid, ¹H NMR (500 MHz, CDCl₃) δ 8.35 (dd, J = 4.9, 1.9 Hz, 1H), 7.82 (td, J = 7.8, 2.0 Hz, 1H), 7.32 – 7.26 (m, 1H), 7.14 (d, J = 8.1 Hz, 1H), 3.70 – 3.60 (m, 2H), 2.12 – 2.01 (m, 2H), 1.14 (t, J = 7.5 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 157.40, 148.18, 140.45, 122.69, 115.93, 55.07, 17.34, 12.88; HRMS (ESI) calcd for C₈H₁₁NO₃S (M + H)⁺ 202.0532, found 202.0535.

6-methylpyridin-2-yl 4-methylbenzenesulfonate (4a)²

Colorless solid; mp (69.1-70.3°C); ¹H NMR (500 MHz, CDCl₃) δ 7.90 (d, *J* = 8.4 Hz, 2H), 7.63 (t, *J* = 7.8 Hz, 1H), 7.34 (d, *J* = 8.5 Hz, 2H), 7.05 (d, *J* = 7.5 Hz, 1H), 6.90 (d, *J* = 8.1 Hz, 1H), 2.45 (s, 3H), 2.41 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 158.09, 156.24, 145.21, 140.13, 133.83, 129.55, 128.79, 122.06, 112.23, 23.81, 21.75.

5-methylpyridin-2-yl 4-methylbenzenesulfonate (4b)

colorless liquid, ¹H NMR (500 MHz, CDCl₃) δ 8.05 (s, 1H), 7.85 (d, *J* = 8.2 Hz, 2H), 7.56 (d, *J* = 8.2 Hz, 1H), 7.33 (d, *J* = 8.1 Hz, 2H), 7.00 (d, *J* = 8.2 Hz, 1H), 2.44 (s, 3H), 2.30 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 154.94, 148.22, 145.27, 140.66, 133.58, 132.61, 129.73, 128.53, 115.51, 21.76, 17.72.

4-methylpyridin-2-yl 4-methylbenzenesulfonate (4c)²

colorless liquid, ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, J = 5.1 Hz, 1H), 7.88 (d, J = 8.3 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 7.03 (d, J = 5.6 Hz, 1H), 6.94 (s, 1H), 2.44 (s, 3H), 2.37 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 157.17, 152.07, 147.78, 145.26, 133.72, 129.70, 128.56, 123.88, 116.41, 21.76, 21.03.

3-methylpyridin-2-yl 4-methylbenzenesulfonate (4d)²

Colorless solid; mp (65.3-65.8°C); ¹H NMR (500 MHz, CDCl₃) δ 8.07 (d, *J* = 6.0 Hz, 1H), 7.95 (d, *J* = 8.3 Hz, 2H), 7.59 (d, *J* = 7.4 Hz, 1H), 7.36 (d, *J* = 8.1 Hz, 2H), 7.12 (dd, *J* = 7.4, 4.8 Hz, 1H), 2.46 (s, 3H), 2.31 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 156.14, 145.39, 145.10, 141.10, 134.52, 129.65, 128.62, 125.50, 122.68, 21.77, 16.15. F₃C

5-(trifluoromethyl)pyridin-2-yl 4-methylbenzenesulfonate (4e)

colorless liquid, ¹H NMR (500 MHz, CDCl₃) δ 8.45 (d, *J* = 5.1 Hz, 1H), 7.92 (d, *J* = 8.3 Hz, 2H), 7.44 (d, *J* = 5.1 Hz, 1H), 7.37 (d, *J* = 8.4 Hz, 2H), 7.31 (s, 1H), 2.47 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 157.59, 149.58, 145.86, 142.37 (q, *JC-F*=35 Hz), 133.25, 129.86, 128.74, 121.95 (q, *JC-F*=274 Hz), 118.29 (q, *JC-F*=3.28 Hz), 112.17 (q, *JC-F*=3.78 Hz) 21.79; HRMS (ESI) calcd for C₁₃H₁₀F₃NO₃S (M + H)⁺ 318.0406, found 318.0410.

pyridin-3-yl 4-methylbenzenesulfonate(4f)

colorless liquid, ¹H NMR (500 MHz, CDCl₃) δ 8.51 (d, *J* = 4.6 Hz, 1H), 8.16 (d, *J* = 2.5 Hz, 1H), 7.70 (d, *J* = 8.3 Hz, 2H), 7.49 (d, *J* = 9.7 Hz, 1H), 7.37 – 7.30 (m, 3H), 2.46 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 148.07, 146.53, 146.12, 143.85, 131.56, 130.46, 130.08, 128.53, 124.34, 21.79.

2-methylpyridin-3-yl 4-methylbenzenesulfonate (4g)

colorless liquid, ¹H NMR (500 MHz, CDCl₃) δ 8.39 (d, *J* = 4.6 Hz, 1H), 7.72 (d, *J* = 8.3 Hz, 2H), 7.47 (d, *J* = 9.5 Hz, 1H), 7.35 (d, *J* = 8.4 Hz, 2H), 7.15 (dd, *J* = 8.2, 4.7 Hz, 1H), 2.46 (s, 3H), 2.21 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 152.63, 147.38, 146.01, 144.94, 132.42, 130.24, 130.08, 128.39, 122.07, 21.77, 19.33; HRMS (ESI) calcd for C₁₃H₁₃NO₃S (M + H)⁺ 264.0689, found 264.0689.

4-methylpyridin-3-yl 4-methylbenzenesulfonate (4h)

colorless liquid, ¹H NMR (500 MHz, CDCl₃) δ 8.35 (d, J = 4.7 Hz, 1H), 8.06 (s, 1H), 7.74 (m, J = 17.7, 8.3 Hz, 2H), 7.37 (d, J = 8.2 Hz, 2H), 7.17 (d, J = 4.8 Hz, 1H), 2.49 (s, 3H), 2.21 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 147.69, 146.05, 143.64, 141.65, 132.31, 130.44, 130.14, 128.51, 126.44, 21.81, 16.11; HRMS (ESI) calcd for C₁₃H₁₃NO₃S (M + H)⁺ 264.0689, found 264.0692.

5-methoxypyridin-3-yl 4-methylbenzenesulfonate (4i)

colorless liquid, ¹H NMR (500 MHz, CDCl₃) δ 8.21 (s, 1H), 7.72 (d, J = 6.9 Hz, 3H), 7.34 (d, J = 7.9 Hz, 2H), 7.04 (s, 1H), 3.83 (s, 3H), 2.46 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 156.21, 146.75, 146.07, 136.53, 135.45, 131.61, 130.05, 128.56, 115.09, 55.97, 21.79; HRMS (ESI) calcd for C₁₃H₁₃NO₄S (M + H)⁺ 280.0638, found 280.0643.

6-fluoropyridin-3-yl 4-methylbenzenesulfonate (4j)

colorless liquid, ¹H NMR (500 MHz, CDCl₃) δ 7.77 – 7.67 (m, 3H), 7.56 (m, J = 9.1, 6.4, 2.9 Hz, 1H), 7.36 (d, J = 8.0 Hz, 2H), 6.92 (dd, J = 8.8, 3.4 Hz, 1H), 2.47 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.27 (d, JC-F=241 Hz) 146.32, 144.16 (d, JC-F=4.9 Hz), 141.47 (d, JC-F=16 Hz), 135.71 (d, JC-F=9.1 Hz), 131.20, 130.16, 128.59, 110.45 (d, JC-F=40.6 Hz), 22.05; HRMS (ESI) calcd for C₁₂H₁₀FNO₃S (M + H)⁺ 268.0438, found 268.0444.

2-nitropyridin-3-yl 4-methylbenzenesulfonate (4k)

colorless liquid, ¹H NMR (500 MHz, CDCl₃) δ 8.45 (dd, J = 4.6, 1.4 Hz, 1H), 8.01 (dd, J = 8.3, 1.4 Hz, 1H), 7.74 (d, J = 8.4 Hz, 2H), 7.68 (dd, J = 8.3, 4.6 Hz, 1H), 7.37 (d, J = 8.1 Hz, 2H), 2.48 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 150.86, 147.07, 146.25, 137.73, 135.06, 130.79, 130.34, 129.17, 128.67, 21.89; HRMS (ESI) calcd for C₁₂H₁₀N₂O₅S (M + H)⁺ 295.0383, found 295.0389.

ethyl 5-(tosyloxy)nicotinate (41)

colorless liquid, ¹H NMR (500 MHz, CDCl₃) δ 9.11 (s, 1H), 8.33 (s, 1H), 8.06 – 8.01 (m, 1H), 7.73 (d, *J* = 8.3 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 4.41 (q, *J* = 7.1 Hz, 2H), 2.47 (s, 3H), 1.41 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 163.95, 149.05, 147.53, 146.35, 146.18, 131.42, 130.98, 130.19, 128.55, 127.45, 61.98, 21.81, 14.23; HRMS (ESI) calcd for C₁₅H₁₅NO₅S (M + H)⁺ 322.0744, found 322.0748.

4-(6-fluoropyridin-3-yl)morpholine (5a)⁵

¹H NMR (500 MHz, DMSO) δ 7.75 (d, *J* = 2.9 Hz, 1H), 7.08 (dd, *J* = 8.9, 3.0 Hz, 1H), 6.72 (d, *J* = 9.0 Hz, 1H), 3.70 (t, *J* = 4.5 Hz, 4H), 3.23 (t, *J* = 4.5 Hz, 4H).

2-fluoro-5-phenylpyridine (5b)⁶

¹H NMR (500 MHz, CDCl₃) δ 8.35 (s, 1H), 7.90 (t, *J* = 8.0 Hz, 1H), 7.40 (m, *J* = 33.3, 19.9, 7.3 Hz, 5H), 6.95 (d, *J* = 2.8 Hz, 1H).

4. ¹H NMR and ¹³C NMR spectra for compounds.

5. References.

- 1. L. K. Liu, Y. Chi and K.-Y. Jen, J. Org. Chem., 1980, 45, 406-410.
- T. M. Gøgsig, A. T. Lindhardt, M. Dekhane, J. Grouleff and T. Skrydstrup, Chem. - Eur. J., 2009, 15, 5950-5955.
- B. S. Nader, C. E. Pawloski, C. L. Powell, C. F. O'Brien and M. P. Arrington, Ind. Eng. Chem. Res., 1995, 34, 981-986.
- 4. K. Afarinkia and F. Mahmood, Tetrahedron Lett., 1998, 39, 493-496.
- 5. T. Tu, Z. Sun, W. Fang, M. Xu and Y. Zhou, Org. Lett., 2012, 14, 4250-4253.
- J. Yang, S. Liu, J.-F. Zheng and J. Zhou, *Eur. J. Org. Chem.*, 2012, 2012, 6248-6259.