Supporting Information

Porous Carbon Confined Co_xS_y Nanoparticles Derived from ZIF-67 for Boosting Lithium-Ion Storage

Xiao Su^a, Wen Li^{a,*}, Haining Sun^b, Jian Wang^{b,*}, Sisi Hu^a, Fei Yuan^a, Di Zhang^a, Bo Wang^{a,*}

^a Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and

Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China

^b Innovation Center for Hebei Intelligent Grid Distribution Technology, Shijiazhuang Kelin Electric

Co., Ltd, Shijiazhuang 050000, China

*Corresponding authors.

E-mail addresses: liwen_cc@yeah.net (W. L), wangjian0534@sina.com (J. W), wangbo1996@gmail.com (B. W).

Fig. S1. TGA curve of $Co_x S_y$ powder under nitrogen atmosphere.

Fig. S2. XRD patterns of ZIF-67 (a) and ZIF-67(600) (b).

Fig. S3. XPS survey spectrum of $Co_x S_y(600)$, $Co_x S_y(700)$, and $Co_x S_y(800)$.

Fig. S4. TEM images of ZIF-67 (a-c) and hollow Co_xS_y (d-f).

Fig. S5. N_2 adsorption-desorption isotherms of $Co_x S_y(700)$.

Fig. S6. Electrochemical impedance spectroscopy (EIS) of $Co_x S_y(700)$ at 1 A g⁻¹ before and after 100 cycles.

Fig. S7. (a, b) SEM images and (c, d) TEM images of ZIF-67(600).

Fig. S8. CV curve (a) and galvanostatic charge-discharge curves at different rates (b) of ZIF-67(600). Rate performance (c) of ZIF-67(*m*); cycling stability at 1 A g⁻¹ (d) and 500 mA g⁻¹ (e) of ZIF-67(600). (f) The cycling performance comparison of ZIF-67(600) and $Co_xS_y(700)$ at 2 A g⁻¹ for 700 cycles.

Fig. S9. The comparison of rate (a), cycle (b), and long cycle (c) for $Co_xS_y(700)$ and $Co_xS_y(700)$ -WC.