Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

Interfacial Carrier Transport Property of Gallium Nitride Epilayer/Quantum Dot Hybrid Structure

Huiyun Wei^{a,c,d}, Peng Qiu^a, Meina Yu^b, Yimeng Song^a, Ye Li^a, Yingfeng He^a,

Mingzeng Peng^a, Xiaohu Liu^{c,d*}, and Xinhe Zheng^{a*}

^aBeijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key

Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of

Mathematics and Physics, University of Science and Technology Beijing, Beijing,

100083, PR China

^bUniversity of Science and Technology Beijing, Beijing, 100083, PR China
^cSchool of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou
Medical University, Wenzhou 325027, PR China.

^dEngineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences (Wenzhou Institute of Biomaterials & Engineering), Wenzhou 325027, PR China.

*Correspondence: liuxiaohu@wmu.edu.cn; xinhezheng@ustb.edu.cn;

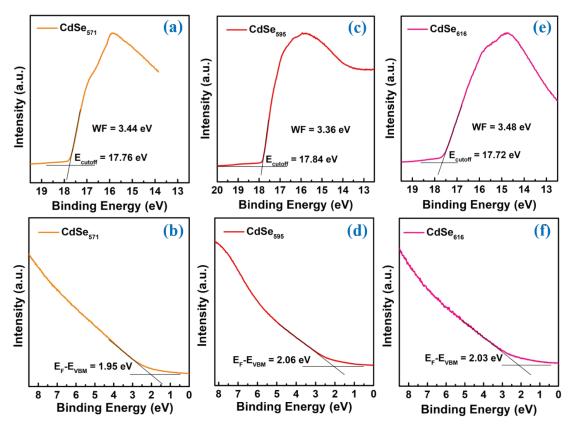


Figure S1. UPS spectra of the CdSe₅₇₁ QDs, CdSe₅₉₅ QDs and CdSe₆₁₆ QDs.