Supporting Information

Low-temperature solution-processed SnO₂ electron transport layer modified by oxygen plasma for planar perovskite solar cells

Akshaiya Padmalatha Muthukrishnan¹, Junyeoung Lee¹, Jongbok Kim², Chang Su Kim³, and Sungjin Jo¹,*

¹School of Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea

²Department of Materials Science and Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea

³Department of Advanced Functional Thin Films, Surface Technology Division, Korea Institute of Materials Science, 797 Changwondaero, Sungsan-Gu, Changwon, Gyeongnam 51508, Republic of Korea

Figure S1. *J-V* characteristics of PSCs based on LTP-SnO₂ annealed at various temperatures ranging from 100°C to 150°C.

Figure S2. EQE spectra of LTP-PSCs and integrated J_{sc} .

Figure S3. XRD pattern of HT-, LT-, and LTP-SnO₂.

Figure S4. Measured contact angle of water droplets on (a) LT-, (b) LTP- , and (c) HT-SnO₂.

Figure S5. XRD pattern of MAPbI₃ layers deposited on HT-, LT-, and LTP-SnO₂.

Figure S6. XPS spectra of (a) Sn 3d (b) O 1s and (c) Cl 2p from HT-SnO₂.

Figure S7. (a) Top view SEM images and grain size distribution histograms (inset) of MAPbI₃ deposited on HT-SnO₂. (b) Corresponding cross sectional SEM images of MAPbI₃ deposited on HT--SnO₂.

Figure S8. (a) *J-V* graph for flexible PSC based on LTP-SnO₂ ETL and (b) bending cycle test results.

Device	$\frac{J_{sc}}{(mA/cm^2)}$	V _{oc} (V)	Fill factor	Efficiency (%)
HT-SnO ₂	21.25±0.5	$1.02{\pm}0.05$	0.61±0.04	13.25±1.0
LT-SnO ₂	19.04±1.0	0.29±0.06	0.33±0.02	1.82±0.43
LTP-SnO ₂	21.16±0.8	1.06±0.02	0.63±0.05	14.16±0.82

Table S1. Averaged photovoltaic performance parameters of PSCs obtained from 20 cells.

Table S2. Device parameters of PSC at different temperatures using oxygen plasma treatment.

Device	J_{sc} (mA/cm ²)	V _{oc} (V)	Fill factor	Efficiency (%)
100°C	18.83	1.07	0.51	10.30
125°C	20.14	1.07	0.60	12.86
150°C	21.61	1.06	0.62	14.30

Device	A1(%)	$\Box_1(ns)$	A2(%)	$\Box_2(ns)$	A3(%)	$\Box_3^{}(ns)$	$\Box_{Avg}(ns)$
HT-SnO ₂	46	2.84	53	11.5	1	134	18
LT-SnO ₂	40	2.48	59	11.5	1	138	18
LTP- SnO ₂	49	2.28	50	7.24	1	121	15

Table S3. The parameters of TRPL spectra.

Table S4. EIS fitted parameters.

Device	$R_{s}(\Omega)$	$R_{rec}(\Omega)$
HT-SnO ₂	25.43	1961
LT-SnO ₂	30.95	19.37
LTP-SnO ₂	19.69	3669