## **Electronic Supplementary Information**

## Surface plasmon-driven photoelectrochemical water splitting of Ag/TiO₂ Nanoplate Photoanode

Piangjai Peerakiatkhajohn<sup>a</sup>, Jung-Ho Yun<sup>b</sup>, Teera Butburee<sup>c</sup>, Waraporn Nisspa<sup>d</sup>, and Supphasin Thaweesak <sup>e\*</sup>

- a Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom 73170, Thailand; piangjai.pee@mahidol.ac.th
- b Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4123, Australia; j.yun1@uq.edu.au
- c National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani 12120, Thailand; teera.but@nanotec.or.th
- d Division of Science and Technology, Faculty of Science and Technology, Phetchaburi Rajabhat University, Phetchaburi 76000, Thailand; waraporn.bun@mail.pbru.ac.th
- e Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chon Buri 20131, Thailand; supphasin@eng.buu.ac.th



Fig. S1 Raman spectra of  $TiO_2$  NP photoanode.



**Fig. S2** The variations of photocurrent density of  $Ag/TiO_2 NP$  photanodes at different deposition time (a) linear sweep voltametric (I-V) curves and (b) Transient photocurrent response (I-t) at 1.23 V vs. RHE under simulated AM1.5G illumination.

Table S1 A summary of recent studies for Ag/TiO<sub>2</sub> based photoanodes in photoelectrochemical system.

| Photoanode                                                  | Photocurrent<br>density                                                    | Electrolyte/<br>Illumination                                        | Method                             | Ref.       |
|-------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------|------------|
| TiO <sub>2</sub> nanotube<br>Ag/TiO <sub>2</sub> nanotube   | -<br>0.104 mA/cm <sup>2</sup><br>at 0.7 V vs. SCE                          | 0.5 M Na₂SO₄,<br>300 W Xe lamp                                      | Anodization and electrodeposition  | [1]        |
| TiO <sub>2</sub> nanorod<br>Ag/TiO <sub>2</sub> nanorod     | 0.014 mA/cm <sup>2</sup><br>0.047 mA/cm <sup>2</sup>                       | 0.35 M NaSO₃ and<br>0.25 M NaS,<br>100 mW/cm²                       | Hydrothermal and photodeposition   | [2]        |
| $TiO_2$ nanorod<br>Ag/TiO_2 nanorod                         | 0.012 mA/cm <sup>2</sup><br>0.043 mA/cm <sup>2</sup>                       | 0.1 M Na <sub>2</sub> SO <sub>4</sub> ,<br>150 W xenon lamp         | Hydrothermal and photodeposition   | [3]        |
| Fe/TiO₂ nanotube<br>Ag/TiO₂ nanotube                        | 0.05 mA/cm <sup>2</sup><br>0.23 mA/cm <sup>2</sup><br>at 0.6 V vs. Ag/AgCl | 0.1M Na <sub>2</sub> S and<br>0.2 M NaOH,<br>100 mW/cm <sup>2</sup> | Anodization and electrodeposition  | [4]        |
| TiO <sub>2</sub> nanotube<br>Ag/TiO <sub>2</sub> nanotube   | 0.011 mA/cm <sup>2</sup><br>0.1 mA/cm <sup>2</sup><br>at 0 V vs. Ag/AgCl   | 0.1M Na <sub>2</sub> S and<br>0.2 M NaOH,<br>100 mW/cm <sup>2</sup> | Anodization and photodeposition    | [5]        |
| TiO <sub>2</sub> nanoplate<br>Ag/TiO <sub>2</sub> nanoplate | 0.07 mA/cm <sup>2</sup><br>0.35 mA/cm <sup>2</sup><br>at 1.23 V vs. RHE    | 0.5 M Na <sub>2</sub> SO <sub>4</sub> ,<br>100 mW/cm <sup>2</sup>   | Hydrothermal and electrodeposition | This study |

|                        | $R(\Omega)$ |       |       | CPE (F)                 |                         |  |
|------------------------|-------------|-------|-------|-------------------------|-------------------------|--|
| Photoanode             | Rs          | Rct1  | Rct2  | CPE1                    | CPE2                    |  |
| TiO <sub>2</sub>       | 7.595       | 113.9 | 66.59 | 4.747 x10 <sup>-8</sup> | 1.579 x10 <sup>-7</sup> |  |
| 1m-Ag/TiO <sub>2</sub> | 5.078       | 31.06 | 40.54 | 1.912 x10 <sup>-7</sup> | 3.198 x10 <sup>-6</sup> |  |

35.93

31.12

2.349 x10<sup>-7</sup>

2.995 x10<sup>-7</sup>

3.703 x10<sup>-6</sup>

3.822 x10<sup>-6</sup>

## Table S2 The fitting results using the equivalent model for EIS measurements

29.74

21.81

## References

3m-Ag/TiO<sub>2</sub>

5m-Ag/TiO<sub>2</sub>

3.522

3.452

- 1. Z. Lian, W. Wang, S. Xiao, X. Li, Y. Cui, D. Zhang, G. Li and H. Li, Scientific Reports, 2015, 5, 10461.
- 2. K. Xu, Z. Liu, S. Qi, Z. Yin, S. Deng, M. Zhang and Z. Sun, RSC Advances, 2020, 10, 34702-34711.
- 3. K. X. Zhu Liu, Hai Yu, Zhaoqi Sun, International Journal of Energy Research, 2020, 45.
- 4. M. M. Momeni and P. Zeinali, Journal of Electroanalytical Chemistry, 2021, 891, 115283.
- 5. M. M. Momeni and P. Zeinali, Journal of Electronic Materials, 2021, 50, 5810-5818.