Supplementary Information

Cellulose-reinforced poly(ethylene-co-vinyl acetate)-supported Ag nanoparticles with excellent catalytic properties: Synthesis of thioamides using the Willgerodt–Kindler reaction

Anoop Singh^a, Sanjeev Saini^a, Narinder Singh^a*, Navneet Kaur^b*, Doo Ok Jang^c*

^aDepartment of Chemistry, Indian Institute of Technology Ropar, Punjab 140001, India

^bDepartment of Chemistry, Panjab University, Chandigarh 160014, India

^cDepartment of Chemistry, Yonsei University, Wonju 26493, Korea

gure S1. (A) Dynamic light scattering and (B) ultraviolet-visible spectra of Ag nanoparticles.

Figure S2. (A) Stress-strain and (B) force-position curves of poly(ethylene-co-vinyl acetate).

Figure S3. (A) Stress–strain and (B) force–position curves of the cellulose–poly(ethylene-co-vinyl acetate composite.

Figure S4. Scanning electron micrographs of the AgNPs@cellulose-PEVA after five catalytic cycles at different magnifications. Here, AgNPs and PEVA denote Ag nanoparticles and poly(ethylene-co-vinyl acetate), respectively.

Figure S5. ¹H NMR (CDCl₃) of 1.

Figure S6. ¹H NMR (CDCl₃) of **2**.

Figure S7. ¹H NMR (CDCl₃) of **3**.

Figure S8. ¹H NMR (CDCl₃) of 4.

Figure S9. ¹H NMR (CDCl₃) of 5.

Figure S10. ¹H NMR (CDCl₃) of 6.

Figure S11. ¹H NMR (CDCl₃) of 7.

Figure S12. ¹H NMR (CDCl₃) of 8.

Figure S13. ¹H NMR (CDCl₃) of 9.

Figure S14. ¹H NMR (CDCl₃) of 10.

Figure S15. ¹H NMR (CDCl₃) of 11.

Figure S16. ¹H NMR (CDCl₃) of 12.

Figure S17. ¹H NMR (CDCl₃) of **13**.

Figure S18. ¹H NMR (CDCl₃) of 14.

Figure S19. ¹³C NMR (CDCl₃) of 1.

Figure S20. ¹³C NMR (CDCl₃) of **2**.

Figure S21. ¹³C NMR (CDCl₃) of **3**.

Figure S22. ¹³C NMR (CDCl₃) of 4.

Figure S23. ¹³C NMR (CDCl₃) of **5**.

Figure S24. ¹³C NMR (CDCl₃) of 6.

Figure S25. ¹³C NMR (CDCl₃) of **7**.

Figure S26. ¹³C NMR (CDCl₃) of 8.

Figure S27. ¹³C NMR (CDCl₃) of 9.

Figure S28. ¹³C NMR (CDCl₃) of 10.

Figure S29. ¹³C NMR (CDCl₃) of 11.

Figure S30. ¹³C NMR (CDCl₃) of **12**.

Figure **S31.** ¹³C NMR (CDCl₃) of **13**.

Figure S32. ¹³C NMR (CDCl₃) of 14.

Figure S33. HRMS of 1.

Figure S34. HRMS of 2.

Figure S35. HRMS of 3.

Figure S36. HRMS of 4.

Figure S37. HRMS of 5.

Figure S38. HRMS of 6.

Monoisotopic Mass, Even Electron Ions 47 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Lised:									
C: 10-30 H Sample Name	H: 11-35 N: 0 : ASC-28)-3 O:0-2 S	3: 0-2	IITRPR				XEVO G2-XS QTOF	
070120-ASC-2	8 16 (0.165)							1: TOF MS ES+ 4.60e+007	,
100	208.0797								
%-									
]	209.0788								
167	210.0743 255.942	29 292.0293	19 477.	.0713 515.0	723	663.4476	747.4047 7	93.4073 874.3452	1
100 150	200 250	300 350 4	00 450	500 58	600 00	650 7	00 750 80	0 850 900	
Minimum: Maximum:		5.0 50.0	-1.5 50.0						
Mass	Calc. Mass	mDa PPM	DBE	i-FIT	Norm	Conf(%)	Formula		
208.0797	208.0796	0.1 0.5	5.5	2682.5	n/a	n/a	C11 H14 N	o s	

Figure S39. HRMS of 7.

Figure S40. HRMS of 8.

Figure S41. HRMS of 9.

Figure S42. HRMS of 10.

Figure S43. HRMS of 11.

Figure S44. HRMS of 12.

Figure S45. HRMS of 13.

Figure S46. HRMS of 14.

Table S1. Impact energies of the AgNPs@cellulose–PEVA hybrid catalyst in the Izod and Charpy modes. Here, AgNPs and PEVA denote Ag nanoparticles and poly(ethylene-co-vinyl acetate), respectively.

Entry	Mode	Energy (kJ/m)	Degree
1	Izod	1.865	123
2	Charpy	5.939	81

Table S2. Yields of several reported catalysts for the synthesis of thioamides. Here, AgNPs and PEVA denote Ag nanoparticles and poly(ethylene-co-vinyl acetate), respectively.

Entry	Catalyst	Time (h)	Yield (%)	Reference
1	Pyridine	24	86	1
2	-	70	68	2
3	Metal complex	18	82	3
4	$K_2S_2O_8$	4	51	4
5	AgNPs@cellulose-PEVA	2.5	98	This study

References

1. T. B. Nguyen, M. Q. Tran, L. Ermolenko, A. Al-Mourabit, , *Org. Lett.*, 2014, **16**, 310–313. DOI:<u>10.1021/o1403345e</u>.

2. M. Patra, J. Hess, S. Konatschnig, B. Spingler, G. Gasser, , *Organometallics*, 2013, **32**, 6098–6105. DOI:<u>10.1021/om400715m</u>.

3. X. Wang, M. Ji, S. Lim, H. Y. Jang, J. Org. Chem., 2014, **79**, 7256–7260. DOI:<u>10.1021/jo501378v</u>.

4. J. Wei, Y. Li, X. Jiang, , Org. Lett., 2016, 18, 340–343. DOI: <u>10.1021/acs.orglett.5b03541</u>.