Supplementary Material (ESI)

Synthesis of a 2D Cu@TiO₂ composite via the design of a 1D Cubased coordination polymer precursor for efficient and selective photodegradation of dyes

Ya-Qian Zhang,^{a, c} Ning Xu,^a Yu Liu,^a Xiao-Sa Zhang,^a Wen-Ze Li^{a*}, Hong-Tian

Zhao^a and Jian Luan^{b*}

^a College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China

^b College of Sciences, Northeastern University, Shenyang, 100819, P. R. China

^c College of Chemistry, Liaoning University, Shenyang 110036, P. R. China

E-mail: liwenze@syuct.edu.cn (W. Z. Li); 2010044@stu.neu.edu.cn (J. Luan)

Cu(1)–O(1)	1.9265(17)	Cu(1)–O(4)#1	1.9441(16)			
Cu(1)–O(1W)	1.9489(16)	Cu(1)–N(1)	1.988(2)			
Cu(2)–O(8)#2	1.9581(17)	Cu(2)–O(3W)	1.9818(17)			
Cu(2)–O(5)	1.9868(16)	Cu(2)–N(2)	2.029(2)			
Cu(2)–O(2W)	2.2214(18)	O(1)-Cu(1)-O(4)#1	165.73(8)			
O(1)–Cu(1)–O(1W)	89.36(7)	O(4)#1-Cu(1)-O(1W)	87.93(7)			
O(1)–Cu(1)–N(1)	91.43(7)	O(4)#1-Cu(1)-N(1)	92.36(8)			
O(1W)–Cu(1)–N(1)	175.54(8)	O(8)#2-Cu(2)-O(3W)	89.79(7)			
O(8)#2-Cu(2)-O(5)	179.73(8)	O(3W)–Cu(2)–O(5)	90.47(7)			
O(8)#2-Cu(2)-N(2)	89.28(7)	O(3W)–Cu(2)–N(2)	171.84(8)			
O(5)–Cu(2)–N(2)	90.47(7)	O(8)#2-Cu(2)-O(2W)	90.46(7)			
O(3W)–Cu(2)–O(2W)	89.66(7)	O(5)–Cu(2)–O(2W)	89.49(7)			
N(2)–Cu(2)–O(2W)	98.45(8)					
Symmetry codes: $\#1 x, y - 1, z; \#2 x, y + 1, z$.						

Table S1 Selected bond distances (Å) and angles (°) for complex 1.

Supplementary Material (ESI)

Table S2 Hydrogen bonding geometries (Å, °) of complex 1.

D–H···A	D–H	Н…А	D····A	D–H···A		
N3–H3B····O5ª	0.86	2.17	3.0036	162		
O3W–H3WB…O3 ^b	0.85	1.94	2.7628	162		
O2W-H2WA…O9°	0.85	2.14	2.7205	125		
Symmetry codes: a $1 - x, -y, 1 - z; b x, -1 + y, -1 + z; c 1/2 + x, 1/2 - y, -1/2 + z.$						

Fig. S1 The IR spectrum of complex 1.

Fig. S2 The PXRD patterns of simulated and fresh sample for complex 1.

Supplementary Material (ESI)

Fig. S3 The TG curve of complex 1.

Fig. S4 UV-vis diffuse-reflectance spectra (a) and Tauc plots of $(Ahv)^2$ versus (*hv*) (b) of TiO₂, complex **1**, and Cu@TiO₂, respectively.

Fig. S5 UV–vis spectra of MB (a), RhB (b), GV (c), MO (d), and CR (e) solutions which were recorded after photocatalytic degradation had been performed for different lengths of time without catalysts.

Fig. S6 UV–vis spectra of MB (a), RhB (b), GV (c), MO (d), and CR (e) solutions which were recorded after photocatalytic degradation had been performed for different lengths of time with complex 1. (f) The photodegradation rates of MB, RhB, MO, CR and GV at different time points during exposure to complex 1.

Fig. S7 Pseudo-second-order plot with respect to time for Cu@TiO₂ in an aqueous GV solution for 90–240 min under UV irradiation. Equation: $t/C_t = 1/(kC_t^2) + t/C_0$, where C_0 represents the initial concentration of GV (10 mg L⁻¹), C_t is the residual concentration of GV at time t (min), and k denotes the pseudo-second-order rate constant (L mg⁻¹ min⁻¹).

Fig. S8 UV–vis spectra of MB (a), RhB (b), GV (c), MO (d), and CR (e) solutions which were recorded after photocatalytic degradation had been performed for different lengths of time with pure TiO₂. (f) The photodegradation rates of MB, RhB, MO, CR and GV at different time points during exposure to pure TiO₂.

Fig. S9 The cycling stability of the photocatalytic degradation of GV on the $Cu@TiO_2$.

Fig. S10 The PXRD patterns of the cycling stability of the photocatalytic degradation of GV on the $Cu@TiO_2$.