Supporting Information

Impact of atomic layer deposited TiO_2 on the photocatalytic efficiency of TiO_2/w -VA-CNTs nanocomposite materials

Inês E. Oliveira^{a, c, d}, Ricardo M. Silva^a, J. Rodrigues^b, M. R. Correia^b, T. Monteiro^b, Joaquim L. Faria^{c, d}, Rui F. Silva^a, Cláudia G. Silva^{*c, d}

^a CICECO - Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.

^b i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal.

^c LSRE-LCM - Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal.

^d ALICE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

Figure S1. Schematic representation of TiO₂ deposited via ALD on 1 cm × 1 cm VA-CNTs with different surface topography and on 1 cm × 1 cm Si/SiO₂ substrate for comparison purposes. The photocatalytic activity of these samples was assessed by photodegradation of RhB.

Figure S2. Macrographs of the physical appearance of the VA-CNTs (a) before and (c) after TiO₂ ALD, 200 ALD cycles at 200 °C (not to scale). (b) and (d) Top view SEM images of w-VA-CNTs after TiO₂ ALD, 200 ALD cycles at 200 °C.

Figure S3. Experimental set-up for photocatalytic reactions of RhB.

Figure S4. Low- and high magnification cross-sectional SEM image (a) of the TiO_2/w -VA-CNTs nanocomposite after 200 ALD cycles. TE-STEM mode image (b), SE-STEM mode image of the coated CNTs. SE-STEM mode of an individual coated nanotube (c,d,e,f,g,h). The inset in (f) shows the STEM/EDS mapping of Ti on the nanotube surface, elucidating the contrast-based interpretation.

Figure S5. Cross-sectional SEM images and corresponding EDS elemental maps of the Ti and C from the TiO_2/W -VA-CNTs nanocomposites after 200 ALD cycles at different deposition temperatures. The elemental maps indicate a homogeneous Ti distribution within the VA-CNTs arrays at μ m-scale.

Table S1. Estimated Ti/C ratio (at.%) values f maps indicate a homogeneous rom the SEM/EDS analysis.

Sample	Deposition temperature (°C)	Ti/C (at.%)
w-VA-CNTs	100 (200 cycles)	1.725±0.032
w-VA-CNTs	150 (200 cycles)	1.178±0.042
w-VA-CNTs	200 (200 cycles)	0.923±0.043
w-VA-CNTs	250 (200 cycles)	0.922±0.011
w-VA-CNTs	300 (200 cycles)	0.274±0.002
w-VA-CNTs	300 (400 cycles)	0.855±0.036
VA-CNTs	200	0.710±0.064

The average Ti/C ratio values and corresponding errors were obtained from acquiring three EDS spectra at different locations for each TiO_2/w -VA-CNTs nanocomposites (1 cm × 1 cm) after 200 ALD cycles at different deposition temperatures. For all samples, the error values are less than 1%, indicating the Ti good uniformity on the CNTs surface, corroborated by the SEM/EDS elemental mapping in Figure S5.

Figure S6. Raman spectra of w-VA-CNTs and VA-CNTs and corresponding l_D/l_G ratio values. The l_D/l_G value of 1.45 means a higher degree of disorder or defects on the w-VA-CNTs. It is well known that this type of defects on carbon nanotubes can act as nucleation sites for TiO₂ ALD growth.

Table S2. Raman peak position of D and G bands.

Sample	D Band (cm ⁻¹)	G Band (cm ⁻¹)	I _D /I _G
w-VA-CNTs (650°C)	1342.27	1578.99	1.45
VA-CNTs (700°C)	1360.21	1574.65	1.03

The observed differences in the I_D/I_G value arise from the deposition temperature of the TCVD process, higher deposition temperatures lead to a lower degree of disorder or defects.

Figure S7. Representative GIXRD diffraction patterns (a), UV-vis diffuse reflectance spectra (b) of the TiO_2/w -VA-CNTs nanocomposites after 200 ALD cycles at different deposition temperatures. The absence of TiO_2 related GIXRD peaks at 100 °C confirms that the structure of the films is amorphous. The * denotes the diffraction peak of Si/SiO₂ substrate.

Table S3. Estimated crystallite size.

Sampla	Deposition	Crystallite
Sample	temperature (°C)	size (nm)
TiO ₂ /w-VA-CNTs	100 (200 cycles)	
TiO ₂ /w-VA-CNTs	150 (200 cycles)	2.43
TiO ₂ /w-VA-CNTs	200 (200 cycles)	13.77
TiO ₂ /w-VA-CNTs	250 (200 cycles)	13.64
TiO ₂ /w-VA-CNTs	300 (200 cycles)	4.60
TiO ₂ /w-VA-CNTs	300 (400 cycles)	34.33
TiO ₂ - P25		22.62

The crystallite size was calculated using the Debye–Scherrer equation from the main diffraction peak (101).

Table S4. Raman peak position and FWHM of anatase TiO₂/w-VA-CNTs after 200 ALD cycles at different deposition temperatures.

Sample	Eg(1)		
Deposition temperature (°C)	Position (cm ⁻¹)	FWHM (cm ⁻¹)	
150	147.1	23.7	
200	148.5	17.9	
250	147.8	17.0	
300	149.4	26.2	
TiO ₂ - P25	143.4	14.0	

In order to better evaluate the differences between the spectra, the wavenumbers and the full width at half maximum (FWHM) of the Raman modes are summarized in Table S4. The dominant low-frequency mode of anatase TiO_2 around 148 cm⁻¹ is associated with the O-Ti-O bonding vibration ($E_{g(1)}$).

Figure S8. Representative TE-STEM mode images of coated nanotubes (w-VA-CNTs arrays) with TiO_2 after 200 ALD cycles at (a) 100 °C, (b) 150 °C, (c) 200 °C, (d) 250 °C, (e) 300 °C and a nanotube coated with TiO_2 after 400 ALD cycles at 300 °C (f).

Figure S9. Thickness of TiO_2 thin films as a function of the deposition temperature. The thickness is estimated from the TiO_2 thin film thickness measured after 200 ALD cycles on w-VA-CNTs from TE-STEM mode images (Figure S8). Error bars indicate the standard deviation. It can be observed that a good saturation feature is attained when the deposition temperature was varied from 200 to 250 °C. The TiO_2 thin films were deposited with 200 ALD cycles at a fixed condition of 0.5 s TTIP pulse, 20 s of residence time, 10 s Ar purging, 2 s H₂O pulse, 15 s of residence time, and 10 s Ar purging.

Table S5. Estimated growth rate values (*i.e.*, growth per cycle, GPC).

Sample	Deposition temperature (°C)	Thickness (nm)	GPC (nm)
w-VA-CNTs	100 (200 cycles)	14.3	0.072
w-VA-CNTs	150 (200 cycles)	12.7	0.063
w-VA-CNTs	200 (200 cycles)	11.2	0.056
w-VA-CNTs	250(200 cycles)	11.1	0.055
w-VA-CNTs	300 (200 cycles)	5.6	0.028
w-VA-CNTs	300 (400 cycles)	4.7	0.012
Si (100)	200 (200 cycles)	17.7	0.088

The film growth per cycle (GPC) was calculated by dividing the film thickness by the total number of ALD cycles. At a deposition temperature of 200 °C, the growth rate of TiO_2 thin film is slightly larger on Si substrate. The TiO_2 film thickness on Si substrate determined by XRR was inserted for comparison.

Figure S10. XRR pattern (a), 3D rendered AFM topography images (1 μ m × 1 μ m) (b), and corresponding height profile (c) along the blue line shown in (b) of the TiO₂ thin film after 200 ALD cycles at 200 °C onto Si substrates. From the XRR, the film thickness is estimated to be 17.7 nm and the roughness (RMS) value is 0.21 nm, determined from the AFM image. The film is very uniform with RMS roughness of less than 1.2% for its thickness.

Ti precursor	O ₂ precursor	T (°C)	TiO ₂ Phase	GPC (Å/cycle)	Substrate	Observations/Application	Ref.
TTIP	H ₂ O	60 120 220	Amorphous Anatase inclusions Anatase	0.16 0.27 0.65	VA-CNTs (150 μm)	Non-functionalized	(1)
TTIP	H ₂ O	160 200 240	Amorphous Amorphous + Anatase	0.26	MWCNTs and pre- treated	Crystallinity depends on number of cycles	(2)
TTIP	H ₂ O	60	Amorphous	0.33	VA-CNTs	Post annealing 450 °C, 30 min Ultrafiltration membranes	(3)
TTIP	H ₂ O	150 250	Amorphous Anatase	0.29 0.40	CNTs Oxidation in nitric acid		(4)
TTIP	H ₂ O	250	Anatase	0.15	Treated CNTs Si substrate	Lithium ion batteries	(5)
TTIP	H ₂ O	100-300	Amorphous Anatase	0.6	w-VA-CNTs (2.3 μm)	Non-functionalized Photocatalysis	This work

Table S6. Summary of growth rates of TiO_2 films deposited by ALD, using TTIP and H_2O precursors, on nanotubes.

Figure S11. XPS survey spectra of (a) uncoated w-VA-CNTs and (b) TiO₂/w-VA-CNTs after 200 ALD cycles at 200 °C. The XPS survey spectrum of the uncoated w-VA-CNTs is also plotted as a reference. The main peak is attributed to the graphitic carbon of the nanotubes.

Table S7. XPS peak fit data components for Ti 2p and O 1s core-level spectra related to TiO₂ deposited at 200 °C, after 200 ALD cycles (GL - % of Lorentzian peak shape character).

Ti 2p	Position (eV)	FWHM (eV)	Area (a.u.)	GL (%)
Ti 2p _{3/2}	458.2	1.1	71117.2	19
Ti 2p _{1/2}	463.9	2.0	35558.6	23
O 1s	Position (eV)	FWHM (eV)	Area (a.u.)	GL (%)
O-Ti	529.8	1.2	77970.5	0
Ti-OH	532.5	1.2	14644.3	100

For confirmation, the atomic ratio of Ti:O, considering only low-binding energy O 1s peak and summation over all Ti 2p related peaks. Ti atoms in the Ti⁴⁺ state, thus confirming the growth of TiO₂ on the surface.

Table S8. Atomic ratio Ti:O estimation for TiO₂.

	RSF	Area of peaks	Atomic ratio Ti:O
Ti 2p _{3/2}	5.22	71117.2	
Ti 2p _{1/2}	2.59	35558.6	0.51
O 1s (O-Ti)	2.93	77970.5	

RSF stands for relative sensitivity factor for each element.

Figure S12. Water contact angle (WCA) of uncoated w-VA-CNTs (a) TiO_2 coated w-VA-CNTs at 150 °C (b) and 200 °C (c). As the water contact angles are less than 90°, the surfaces become hydrophilic, in general. Anatase TiO_2 film grown at 200 °C presents a hydrophilic surface with a water contact angle of ~0°, a thin water-film is observed. A hydrophilic surface is favorable to enhanced photocatalytic performance of the RhB in aqueous solution.

Figure S13. Cross-sectional SEM images and corresponding EDS elemental maps of the Ti and C from the TiO_2/w -VA-CNTs (a) and the TiO_2/VA -CNTs (d) nanocomposites after 200 ALD cycles at 200 °C.

Figure S14. The time profiles of $-ln(C_0/C)$ under UV–Vis irradiation for degradation of RhB aqueous solution and photocatalytic degradation percentage (%) of RhB with different types of substrates with 200 ALD cycles (a,b) and the number of ALD cycles (c,d). The deposition temperature was 200 °C for all samples.

The line slope of TiO_2/w -VA-CNTs was the highest among the samples, which demonstrated the importance of nanostructured TiO_2 thin film (Figure S14a). From Figure S14c it can be seen that the pseudo-first-order rate constant increases with the number of ALD cycles reaching the highest value for 200 ALD cycles, pointing out the optimum loading of TiO_2 .

Figure S15. Cross-sectional SEM images and corresponding EDS elemental maps of the Ti and C from the TiO_2/w -VA-CNTs nanocomposites before (a) and after photodegradation tests (4 cycles).

Table S9. Estimated Ti/C ratio (at.%) values from the SEM/EDS analysis.

Sample	Deposition temperature (°C)	Ti/C (at.%)
w-VA-CNTs – Before (a)	200	0.923±0.043
w-VA-CNTs – After (b)	200	0.807±0.073

The average Ti/C ratio values of TiO_2/w -VA-CNTs nanocomposite before and after the photodegradation tests, indicating that TiO_2 remains supported on the nanotube surface with good photostability for long-term use.

References

1. Guerra-Nuñez C, Zhang YC, Li M, Chawla V, Erni R, Michler J, et al. Morphology and crystallinity control of ultrathin TiO_2 layers deposited on carbon nanotubes by temperature-step atomic layer deposition. Nanoscale. 2015;7(24):10622-33.

2. Zhang YC, Guerra-Nuñez C, Utke I, Michler J, Rossell MD, Erni R. Understanding and Controlling Nucleation and Growth of TiO₂ Deposited on Multiwalled Carbon Nanotubes by Atomic Layer Deposition. Journal of Physical Chemistry C. 2015;119(6):3379-87.

 Feng JH, Xiong S, Wang ZG, Cui ZL, Sun SP, Wang Y. Atomic layer deposition of metal oxides on carbon nanotube fabrics for robust, hydrophilic ultrafiltration membranes. Journal of Membrane Science. 2018;550:246-53.
Meng XB, Geng DS, Liu JA, Li RY, Sun XL. Controllable synthesis of graphene-based titanium dioxide nanocomposites by atomic layer deposition. Nanotechnology. 2011;22(16):10.

5. Wang BQ, Liu J, Sun Q, Xiao BW, Li RY, Sham TK, et al. Titanium Dioxide/Lithium Phosphate Nanocomposite Derived from Atomic Layer Deposition as a High-Performance Anode for Lithium Ion Batteries. Advanced Materials Interfaces. 2016;3(21):1600369.